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Abstract  Climate change impacts have been the major 
subject of discussion for scientists from different fields of 
study, including the agriculture sector. This study 
investigates the effects and implications of future climate 
change on rice production in the Lower River Region of 
The Gambia. The study seeks the following specific 
objectives: i) Analyse temperature and rainfall trends over 
Lower River Region; ii) Determine the relationship 
between temperature, rainfalls and rice production in the 
study area; and iii) Simulate temperature, rainfalls and rice 
production as well as the existing relationship among those 
parameters in the future using seasonality. The trend was 
examined after an exploratory data analysis, a unit root test 
and a correlation analysis. The study revealed an increase 
in maximum temperature (Tmax) and a variation in 
minimum temperature (Tmin) where the increase is not 
constant over 1981-2015. Also, the harvested area, 
production and rainfall increased while yield decreased. 
The data was extrapolated to 2035 using a VARMA 
statistical forecast method. Ordinary Least Squares and 
robust linear regression models were applied to find out the 
future implications (2035 and subsequent near years) of the 
climate parameters on rice production using 1981 to 
2015-year series. The model shows that by 2035, yields 
will negatively be affected by the increase in Tmax and 
positively by the very little variation in Tmin. But the risk 
is that the ratio is not balanced, the damages of Tmax will 
be greater than the good productions of Tmin. The Tmin 
will also decrease as a general trend occasioning severe 
conditions for rice production in the region. This reveals 
the effects of climate change on rice production even 

though the relationship between climatic and rice variables 
remains low, because of the numerous parameters in rice 
production. This calls for an urgent need to improve rice 
varieties that will thrive well in the anticipated new 
climatic conditions (high yielding, heat tolerant, saline 
tolerant and early maturing) and promotion of good 
cultural practices that save water to cope with future 
climate. This study suggests that more studies should 
include other parameters of rice production for improved 
predictions. 

Keywords  Climate Change, Rice Production, 
Statistical Forecast, Multiple Linear Regression, VARMA 
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1. Introduction 
Climate variability and change spawn both threats and 

prospects. Moreover, available research and case studies 
confirm that developing countries face the enormous 
impacts and risks associated with climate variability and 
change as a result of low adaptive capacity (Kotir, 2011). 
There is a growing body of consensus that shows that 
climate variability and change fall disproportionately on 
the poorest and most vulnerable populations, especially 
developing countries. Climate change has been predicted to 
decrease agricultural productivity by as much 20% in 
Africa, Asia and Latin America at the end of this century 
(Adhikari, et al., 2015; Komba & Muchapondwa, 2015). 
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Countries with an agrarian economy are most threatened 
by climate change and variability (IPCC, 2007). Moreover, 
a study of Al-Amin et al. (2016) concluded that by 2100, 
agriculture in Sub-Saharan Africa, including The Gambia 
may likely face yield reduction and low GDP due to 
climate change. The economy of The Gambia is mainly 
dependent on rain-fed agriculture and services (UNECA, 
2017). It is clear that factors such as climate change 
endangers economic stability in the country (UNECA, 
2017). For instance, analyses from 1943 to 1983 of climate 
parameters (temperature and rainfall) of the country 
depicted an increase of 1 °C in the annual mean 
temperature and 20% to 25% reduction in the annual mean 
rainfall (AGRER, 2017). This could result in devastative 
impacts on the livelihood support systems of farmers, 
especially rice farmers in the country. Any severe decline 
in the production of rice, the major basic food of the 
country (the auto-consumption of which is about 60-70%) 
will have a serious impact on the food security level of 
rural households and even those in the urban areas (Fatajo, 
2009). 

Rice (Oryza sativa L.) is the second most important crop 
in the world after wheat, with about 522 metric tonnes 
being globally produced. It accounts for 56 % of the 
cultivated land in The Gambia. It is the staple food 
consumed and accounts for 25-35% of total cereal 
production of the country (Fatajo, 2009) with the 
agricultural sector accounting for 20% of GDP (GBOS, 
2017) and 75% of the country’s labour force (NPC, 2009). 
Rice farming is therefore an important source of 
livelihoods and incomes to thousands of Gambians (NAPA, 
2007). Rice farming in the country is practised both in 
lowlands and uplands during the wet season because rice 
production requires water for irrigation (Silva et al., 2007). 
There is consensus that temperature and rainfall will 
continue to increase and decrease respectively in the 
tropics and sub-tropics (Alavian et al., 2009). For this 
reason, predicting future temperature and rainfall as well as 
their impacts at country level could be of great importance 
to the agricultural sector. 

Few studies in The Gambia focused on the productivity 
of major crops and how they have been impacted by 
historical climate change (Hayes et al., 1997; Akon-yamga 
et al., 2011). For example, Bojang et al. (2016) used a 
Linear Programming model to assess how to maximize 
farmers’ net profit under a set of constraints (plant area and 
water). The study concluded that about 50% of annual 
revenue of the farm could be achieved through optimum 
water use efficiency. 

Thus, this study could provide insights for planning 

strategies in order to meet the increased demands for rice in 
the country during this century. While recent studies 
focused on modelling future impacts of climate change on 
rice production in some countries in Asia (Basak et al., 
2010; Silva et al., 2007; Kropff, et al., 1997), little is being 
done in Africa, especially at country level. 

There is therefore, a dearth of knowledge on the 
implications of climatic parameters (temperature and 
rainfall, for instance) on rice crops in Africa and more 
especially in countries where rice is the staple food as it is 
the case for The Gambia. It is against this background that 
this study seeks to analyse future climatic parameters 
(temperature and rainfall) and their implications on rice 
production in the country. The study will examine the 
trends and relationship (current and future) between 
climatic variables (temperature and rainfall) and rice 
production to reveal the potential impacts of climate 
change on rice production in The Gambia in the near future. 
This will inform agriculture experts, academics, 
researchers, government, NGOs, rice farmers and any other 
stakeholders on the strategies that can improve rice 
production in a climate change context to meet the 
increasing demand of rice in the country. 

2. Materials and Methods 

2.1. Study Area 

The study was carried out in the Lower River Region of 
The Gambia (Figure 1). The region of  a total land surface 
area of 1,618 Km2 (GBoS, 2017), is sited in the southern 
bank of River Gambia and stretches about ninety-five 
kilometres (95 km) from Brumen Bridge in the west to 
Sofanyama Bridge in the east (Government of The Gambia, 
2007) between 13 0 34’ 0” N and longitude 14 0 47’ 0” W. 
The overall population in the region is approximately 
81,042 inhabitants (GBoS, 2013) with over 80% relying on 
agriculture and natural resources as a source of livelihood 
and household income (Government of The Gambia, 2007). 
With a Sudano-Sahelian climate characterized by a short 
rainy season from June to October, the mean annual rainfall 
in the region varies from 900 mm in the South West to 
about 600 mm in the North East. Ranging from 25 °C to 
28 °C, mean temperatures are generally higher in the 
Eastern part of the country. It is noted that rice is the major 
crop cultivated in the region (MOA, 2013). Owing to low 
water flows of the River Gambia and increase of 
evaporation due to climate change, rice production hectares 
in the region had dropped (Webb, 1992). 
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Figure 1.  Study Area, Lower River Region (LLR), The Gambia 

2.2. Data Collection and Analysis 

Monthly Data, from 1981 to 2015, (minimum and 
maximum temperature and rainfall data) for this study were 
collected from the Department of Water Resources (DWR) 
of The Gambia. The historical data for rice production of 
the region was obtained from the Department of Planning 
Services of Agriculture for the same period. The collected 
data were specifically for the Lower River Region of The 
Gambia, and the datasets were controlled for quality and 
cleaned up to enable appropriate analysis. To get the annual 
data from the monthly observations of climate parameters, 
a re-sampling method was used in python with a function 
to compute the sum and another to compute the mean of all 
the grouped values by date index, respectively for rainfall 
and temperature data (Ragatoa et al., 2018). 

2.2.1. Exploratory Data Analysis (EDA) 
Exploratory Data Analysis (EDA) was performed after 

the data had been checked for their structure and character. 
The EDA aims to (i) maximize insight into a data set; (ii) 
uncover underlying structure; (iii) extract important 
variables; (iv) detect outliers and anomalies; (v) test 
underlying assumptions; (vi) develop parsimonious models; 
and (vii) determine optimal factor settings (Abzalov, 2016; 
Andrienko & Gennady, 2006; Bolker, 2019; Gelman, 2004; 
Jersky, 2009). In this analysis, the points (i - iv) were 
tested. 

This set of investigation determines how the analysis 

will be carried out (Weihs, 2005). Python programming 
language was used for the whole data analysis. The missing 
values were checked and filled in using the mean nearest 
interpolation for each series of data. A statistical 
descriptive analysis was also performed to determine the 
contours of the data and the distribution. The 
non-parametric ANOVA Kruskal-Wallis H-test for 2 or 
more groups was performed on the annual data, to figure 
out the differences in the groups of categorical data and the 
variations in the datasets (Christensen, 2011; Johnson & 
Girden, 2006; Judd et al., 2018; Martin, 1000; McHugh, 
2011; Shaw & Mitchell-Olds, 1993; Smalheiser, 2017; 
Sthle & Wold, 1989; Vogt, 2015). 

2.2.2. Trend Analysis and Seasonality in the Data 

As in Mushtaq (2011), the stationarity (with the 
assumption that the mean/variance or covariance is 
constant and does not change over time) was tested using 
the Augmented Dickey Fuller Test (ADF Test), a “Unit 
Root Tests” (Hall, 1994; Im, Pesaran, & Shin, 2003). The 
null hypothesis (H0) was that the time series possesses a 
unit root and is non-stationary; the alternate hypothesis (H1) 
said, there is no unit root in the series, implying stationarity 
in the dataset (Phillips & Perron, 1988; Pourahmadi, 1986; 
Priestley & Rao, 1969; Refinetti, 2004). Thus, if the 
p-value in the test is less than the significance level (0.05), 
the null hypothesis is rejected and the conclusion is that the 
data is stationary. The differencing method was applied to 
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the original series when they were found non-stationary. 
The differencing method is done by subtracting the next 
value of the series by the current value and this all through 
the series. 

To analyse the temperature and rainfall seasonal 
estimates, a rolling average (for each point in the time, the 
average of the points is taken on either side of it) was 
performed on a 12 months window for the monthly data. 
The maximum temperature (Tmax) and minimum 
temperature (Tmin) and rainfall data were checked to 
determine their trends (Baker, 1977). The seasonal 
difference was explored and the peak difference checked 
for each series. Periodicity and auto-correlation were 
applied to detect if it repeats itself at an equally spaced 
interval (12 months, but only for the monthly data). The 
same analyses (except for the periodicity) were computed 
on the annual data (using a 6-year window for the rolling 
mean), the annual data comprised the yield, the harvested 
area and the annual production for rice and the climate 
parameters (temperature and rainfall) (Gasparella et al., 
2011). 

The time-series decomposition method used allowed to 
decompose the time series into three distinct components: 
trend, seasonality, and noise to dissociate the trend and 
seasonality for the forecast. This method uses the Seasonal 
and Trend decomposition based on the Loess (Localized 
Regression) method (STL) (Aguilera et al., 2015; Carslaw, 
2005; Cleveland et al.,1990; Jiang, Liang, Wang, & Xiao, 
2010; Mhamdi, Poggi, & Jaïdane, 2011; Rojo et al., , 2017; 
Sanchez-Vazquez, et al., 2012; Silawan et al., 2008; Xiong, 
Li, & Bao, 2018), a filtering algorithm used to decompose 
time series into the three aforementioned components 
based on the application of the Loess smoother. The 
correlation coefficient (Bland & Altman, 1986) was also 
computed to check for possible relationships between the 
variables in the data. This check was performed only on the 
annual data (the yield, the harvested area and the annual 
production were added to the climate parameters) (Cohen, 
1988; Dendukuri & Reinhold, 2005; Goldstein, Cohen, & 
Cohen, 2006; Kissling, 2017; Markowitz, 2018; McKean, 
1969; Mukaka, 2012; Muller, 2012; Pak & Oh, 2010; 
Wassertheil & Cohen, 2006). 

2.2.3. Partial Autocorrelation and Autocorrelation Analysis 

The partial autocorrelation and autocorrelation were 
checked (Haining, 2015; Ord & Getis, 2001; Mills & Mills, 
2014; Schiegg, 2003; Segurado, Araújo, & Kunin, 2006; 
Woolrich et al., 2001). A significantly autocorrelated series 
means the previous values of the series (lags) may be 
helpful in predicting the current values. The partial 
autocorrelation imparts similar information but it expresses 
the pure correlation of the series and their lags but does not 
consider the correlation contributions from the 
intermediate lags. The best model forecast parameters were 
determined using Autocorrelation (ACF) and Partial 
Autocorrelation (PACF) methods on the first order 

difference of the original dataset. PACF considers the 
direct effects while the ACF takes into account the direct as 
well as indirect effect of prior records on the current values 
of a variable. The autocorrelation function helps in 
identifying the good time series model parameters 
(Bisgaard & Kulahci, 2009; Chen, 2012; Hyndman, 2015; 
Kumar & Jain, 2010; Kumar et al., 2014; Ngo, 2013; 
Parmar & Bhardwaj, 2014; Sovann, Nallagownden, & 
Baharudin, 2014; Suhartono, 2011; Tarno et al., 2012; 
Vinod, 2006; Yurekli, Kurunc, & Ozturk, 2005). 

2.2.4. Regression Analysis 
Regression analysis is an important field in statistics and 

machine learning. With the regression method, this study 
reveals the existing correlation between the rainfall data 
and the temperature evolution. For this study, the multiple 
regression analysis was performed using the Ordinary 
Least Square (OLS) method - a generalized linear 
modelling technique that models and estimates the 
relationship between one or more independent variables 
and a dependent variable which has been recorded 
generally as a time series. The dependent variable or 
predictor Y is predicted by multiple explanatory variables:  

Y = B_1 * x_1 + B_2 * x_2 + … + B_n * x_n + α  
    (1) 

Rainfall is the output/dependent variable for the monthly 
climate parameters (rainfall and temperature). It was set to 
determine whether rice production is affected by climate 
variabilities under global warming in the region. The same 
analyses were performed for the second set of data that 
comprised the annual climate parameters and the rice data 
(the harvested area, yield and harvested production). The 
model was built using rainfall as the dependent variable for 
climate parameters (temperature and rainfall) and rice 
production. Also, the yield and the production were 
considered as a dependent variable. A robust linear 
regression (RLM) model was used to determine the future 
relationships between the rice production series and the 
climatic parameters. A robust regression is a 
comprehensive term for methods of linear regression that 
intends to mitigate the effect of outliers (and/or 
heteroscedasticity). The mean absolute deviation (MAD) 
scale factor or scale estimator was used with the H1 
covariance type and a confidence level between 0.25% and 
97.5%. 

2.2.4. Prediction of Climate Parameters and Rice 
Production (Using VARMA Model) 

Usual time series forecasting methods focus mostly on 
simple or linear relationships. They are advanced and 
perform well on an all-encompassing prediction job, 
provided the data is appropriately prepared and the method 
is well set up and fixed. 

The VARMA (Vector Autoregression Moving-Average) 
method used considers the possible relations in the time 
series’ variables. The VARMA method models the next 
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step in each time series using an ARMA (Auto-Regressive 
Moving Average) model. The VARMA model is based on 
the AR (Autoregression) model (Aboagye-Sarfo et al., 
2015; Du Toit & Browne, 2007) and the MA (Moving 
Average). 

AR model performs with the simple rule that the value of 
variable X at time is defined by the values of previous X. 
The relationship could be formulated as follows: 

   (2) (Guidolin, 2018) 
The Vector Autoregression (VAR) statistical model is 

used to model and determine the linear relationship of 
multiple time series. VAR models generalize the univariate 
autoregressive model (AR model) by modelling the next 
step in each time series or input variable using an AR 
model. It is considered the generalization of AR methods to 
multiple parallel time series, such as multivariate time 
series. The notation for the model involves specifying the 
order for the AR(p) model as parameters to a VAR function 
(VAR(p)). The Vector Autoregression Moving Average 
(VARMA) method has a similar process to the VAR 
method but uses a moving-average time series as does an 
ARMA model. In the ARMA model, AR is 
Auto-regressive and MA is Moving Averages. VARMA 
considers the ARMA model applied to multivariate time 
series. VARMA models are preferred because of the 
theoretical advantages they have over a pure VAR process 
such as the closed under linear transformation (Kascha & 
Trenkler, 2014). In the case of VARMA, the notation for 
the model refers to two parameters (p, q) and needs to 
specify the order for the AR(p) and MA(q) models as 
parameters to a VARMA function, e.g. VARMA(p, q). The 
VARMA method is applied here because of the objective 
to determine the relationship between climate parameters 
and rice production variables and it is suitable for 
multivariate time series. VARMA models are suitable 
models for producing linear forecasts of sets of time series 
variables (Luetkepohl, 2004). It is noted: 

 
(3) 

Finally, a robust regression algorithm was used on the 
VARMA predicted values to 2035 to show the collinearity 
and influence of climate parameters on rice production, 
knowing that ordinary least squares (OLS) method is very 
sensitive to outlying observations (Ali & Qadir, 2015). To 
deal with this problem of outliers, Huber introduced the 
notion of M-estimators in 1964 (Hampel et al., 1986) that 
was improved on in several research works. This analysis 
of M-estimators generally seeks to reduce the influence of 
observations that behave as outliers (Andrews & Pregibon, 
1978). Tukey’s bi-weight or Huber’s method is generally 
used as both of them are M-Estimators and use iteratively 
reweighted least squares. In this study, Andrew’s wave for 
M Estimation (Andrew Wave norm) was employed. The 

distant outliers are completely rejected in a shift process, 
allowing a transitional zone of increasing doubt, hence 
much more efficient than “hard” rejection rules; they are 
usually better than Huber-estimators (Ali & Qadir, 2015). 

3. Results and Discussion 
The results considered the annual and monthly results in 

order to understand the effect of temperature and rainfall 
variability on rice production in the LRR of The Gambia. 
The extrapolation of the data to 2035 shows that there will 
be a change in both temperature and rainfall parameters as 
well as in the rice production and yield. 

3.1. Exploratory Data Analysis (EDA) 

The data were filled using the mean value interpolation 
for each series and resampled in order to perform 
descriptive statistics. The minimum temperature (Tmin) 
varied from 17°C to 25°C and the maximum temperature 
ranged from 30°C to 47°C. The precipitation dataset ranges 
from 00 mm to 463 mm the month during the rainy season. 
The standard deviation revealed that the precipitation was 
highly dispersed, especially in the third (0 - 116) and fourth 
(116 - 463) quantiles. The non-parametric ANOVA results 
(statistic = 342.377, p-value = 4.505e-75) being significant, 
we can reject the null hypothesis that the population 
medians of all the groups are equal. 

The annual data showed similar distribution. But in this 
set of data, rice production, yield and harvested area were 
added. The rainfall was still highly variable but relatively 
dispersed in the quantile repartition. 

The annual group non-parametric ANOVA H statistic is 
179.616 and the p-value is statistically significant (6.462 
e-37). The annual group series is more dispersed compared 
to the monthly group series; this is due to the integration of 
the high values from rice variables but with relatively low 
dispersion in each series. For example, the productions 
show that the series varies between 1500 – 3500 metric 
tonnes (mt) around the mean that is about 2900 mt.  

3.2. Trend Analysis, Seasonality and Periodicity 

3.2.1. Stationarity Test and Data Transformation 

The monthly dataset in Figure 2a clearly shows the range 
variation of the temperature and rainfall (precipitation) 
with peak values at some periods in the time series. 
Stationarity in the time series can also be observed. The 
patterns of the plots can be distinguished as we observe 
seasonality but the trend is not very clear. The annual series 
in Figure 2b does not reveal, at first look to the plot, any 
seasonality nor a clear trend of the time series. 
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a 

 

b 

Figure 2.  Visualization of the time series; a monthly series; b annual series with rice production data 
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The annual data reveals the behaviour of the series. Rice 
production shows patterns that are similar to the harvested 
area. The Augmented Dickey-Fuller (ADF) test, in this 
analysis, was considered for the stationarity test. The 
significance level was fixed at the default value of 5%. 
Table 4 shows that the results of the monthly climatic 
parameters passed the ADF test as in Table 4, as well as in 
Table 5 for the annual series. 

Table 1.  Augmented Dickey-Fuller test results (Monthly data) 

Augmented Dickey-Fuller test 

Test Results Tmin Tmax Prec 

ADF Test Statistic -5.612 -3.500869 -3.635 

p-value 0.000001 0.007965 0.005121 

Observations Used 402 405 408 

Critical Value (5%) -2.869 -2.869 -2.869 

Decision True True True 

* The yellow colour shows the 5% default significance level. 

In a stationarity test if the test statistic is less than the 
critical value, we can reject the null hypothesis H0, 

meaning that the series is stationary. When the test statistic 
is greater than the critical value, we fail to reject the null 
hypothesis (which means the series is not stationary). The 
monthly series are stationary for the 5% critical value as 
well as the 10% critical value. Only 1% has disparities. The 
p-values from the ADF test is much lower than the 0.05 
default significance p-value level, hence we fail to accept 
the H0, meaning stationarity exists in the monthly series 
that is considered only for climatic data. 

The annual series showed the same results for the 
climate parameters and the rice production series, but the 
other series showed different results (area, yields and 
production were not stationary). This can be seen in Table 
5 where the 5% critical values are lower than the test 
statistic values except for the area, yields and production 
series. 

The harvested area and the yield series were not 
stationary. To make them stationary, the first order 
differencing was used for the yield and the harvested area 
series. Figure 3 shows the adjusted yield and harvested area 
series after the first order differencing (subtracting the next 
value by the current value only at the original series level) 
of the data, making it stationary. 

Table 2.  Augmented Dickey-Fuller test results (Annual data) 

Augmented Dickey-Fuller test 

Test Results Tmin Tmax Prec Area Yields Production 

ADF Test Statistic -5.84 -3.79 -4.48 -2.73 0.53 -3.02 

p-value 3.778198e-07 0.003061 0.000211 0.069304 0.985811 0.032887 

Critical Value (5%) -2.95 -2.95 -2.95 -2.96 -2.97 -2.95 

Decision True True True False False True 

* The yellow colour shows the 5% default significance level. 

 

a 
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b 

Figure 3.  First order differencing; a harvested area, b yields 

Table 3.  ADF test results for harvested area and yield series after 
differencing 

Augmented Dickey-Fuller 

Test Results Area Yields 

ADF Test Statistic -4.33 -5.57 

P-Value 0.000397 0.000002 

Lags Used 0.00 3.00 

Critical Value (5%) -2.95 -2.96 

The time series is stationary True True 

The ADF test was repeated on the results to check 
whether the times series were adjusted as stationary series 
that could be used for further analysis (Table 3). 

The series have been made stationary for the future 
model. 

3.2.2. Patterns in the time series 
The time series reveals trends and seasonality in the 

monthly climate parameters (minimum and maximum 
temperature and precipitation) while the annual climate 
parameters do not have any seasonality. Figure 4 shows the 
classical decomposition of the monthly time series. It is 
obvious that the monthly series have seasonality. There is 
no trend in the minimum temperature and the rainfall but 
there is an increasing trend in the maximum temperature 
with a very small magnitude. 
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a)                                                                 b) 

 

c) 

Figure 4.  Decomposition of the monthly climatic parameter series; a) minimum temperature, b) maximum temperature, c) rainfall 
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a)                                                                 b) 

  
c)                                                                 d) 

Figure 5.  Decomposition of the annual series; a) maximum temperature, b) rainfall, c) rice production, d) rice yield 

The annual series do not have any seasonal component. 
The seasonal plot shows 0 and remains the same all year. 
Figure 5 shows the annual patterns of the climatic 
parameters and the rice cultivation in the LRR. The same 
pattern was observed in all the annual series. There is no 
trend in the annual series such as the minimum temperature, 
rice production and harvested area. There is an increasing 
trend in the maximum temperature and precipitation with a 
relatively high magnitude (slope = 9.581). The rice yields 
have a decreasing trend with a high magnitude (slope = 

-25.57). The yields’ trend has been decreasing in the Figure 
5d “trend” with rainfall increasing in the same period (2000 
- 2015) in Figure 5b “trend”. 

An explanation to this phenomenon is first related to the 
decreasing harvested area, as well as the productions which 
have a link with the cultivated area. The cultivated area is 
decreasing. This could also be due to the existence of other 
factors (cultivation practices, land tenure and conflicts, 
natural disasters, etc.) which in fact have an effect on the 
yield. The result corroborates Sonko et al. (2019) study in 
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the region where findings showed yield decrease even 
though rainfall increases. Such results indicate that rice 
yields do not only depend on rainfall, but also on other 
factors that include, non-climate variables such as rice 
cultivation practices (Sonko et al., 2019; NRDS, 2014). 
Other studies have shown that continuous cultivation of 
irrigated rice, where the soil is maintained in anaerobic 
conditions for prolonged periods, does result in decreased 
yield (Pulver & Nguyen 1999). Another possible factor is 
sea-level rise (Bagbohouna et al., 2018; NAPA, 2007; 
Webb, 1992) and the rainy season that becomes shorter, 
abnormal distribution of rainfall during the rainy season in 
the country (Fatajo, 2010). It has been reported that The 
Gambia faces sea-level rise as a result of global warming 
(UNEP, 2000) which may affect coastal rice-growing 
ecology in The Gambia (Clark et al., 2016; Fatajo, 2010; 
Njie, 2002; Webb, 1992). Since the rice cultivated by 
farmers are not saline tolerant and the overall rice farmers’ 

adaptive responses to climate change risks, especially 
saline-water intrusion in the region are deficient 
(Bagbohouna et al., 2018; Webb, 1992), it is more likely to 
see decline in rice yields (Figure 6a). 

The harvested area and the production showed together 
similar patterns and seem to have a good correlation in the 
two variables (Figure 6b). The yield (yield is a 
measurement of the amount of agricultural production 
harvested per unit of land area) decreased from 1985 to 
1995 and increased from 2008. The production has 
increased from 2011 to change the pattern of the evolution 
from lower to higher values. At the same period, the 
maximum and the minimum temperatures exhibited an 
increase as well as rainfall, but the yield continued to 
decrease to even lower records changing the evolution 
pattern with the rainfall from higher to lower values. The 
decreasing trend of the yield confirms the decomposition 
trend component of the yield in Figure 6b. 

 
a) 

 
b) 

Figure 6.  Combination of annual series trends: a rainfall and yield; b harvested area and production 
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3.3. Linear Regression Model Results 

The autocorrelation and partial autocorrelation were first 
performed on annual data only. 

3.3.1. Correlation and Autocorrelation 

Figure 7 shows the regression lines at 95% of confidence 
interval of yields and production variables. Rainfall has 
very poor correlation with yields, as discussed previously 

in the comparison plots. Yields, harvested areas and 
production in Figure 7b, 7c and 7d are rather well 
correlated to each other showing them as being the first 
parameters to take into account when analysing rice 
production using these series of data. Figure 8 presents the 
heatmap of correlation values with good correlation of the 
rice parameters between themselves and the poor 
correlation with the climatic parameters, especially the 
rainfall for the annual series. 

a 
 

b 

 

c 

 

d 

Figure 7.  Correlation tendencies for yield, rainfall, areas and production with their regression line at 95 % confidence. 
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a)                                                               b) 

Figure 8.  Correlation heatmap for the monthly (a) and annual (b) parameters 

The monthly series revealed high autocorrelation (climate parameters), meaning that values of each parameter within 
its own time series data are related to each other. Thus, there exists a relation between one variable current and previous 
value in each of the time series. There is high autocorrelation in the monthly series, making them serially correlated as 
well. The annual series climatic variables’ autocorrelation and partial autocorrelation are shown in Figure 9, they were not 
serially correlated. The absence of autocorrelation between values is statistically significant (in the defined confidence 
interval). The lag values are very low, and they are all in the confidence interval (grey limit on both sides of the 0 value). 
This reveals that the annual climatic parameters are statistically not serially correlated. 

  
a) 
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b) 

   
c) 

Figure 9.  ACF (left panel) and PACF (right panel) of annual climate parameters: a Tmin, b Tmax, c Rainfall 

The Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) were computed on rice 
production variables using the first order difference values 
for area and yield in order to determine the model 
parameters to use (Figure 10 and 11). It is observed that the 
entire pattern shows the same thing, leading to a unique and 
commonly accepted conclusion; the lag where the line 
crosses the confidence interval both on the positive and the 
negative sides is the lag considered for the model 
parameter. To choose the Autoregressive AR(p) parameter, 
the lag value where the PACF line in the chart crosses the 
upper confidence interval for the first time is considered, 
p=1, AR(1), here from almost all the PACF plots. An AR(1) 

autoregressive process is one in which the current value is 
based on the immediately preceding value. For the Moving 
Average MA(q) parameter, the lag value where the ACF 
line crosses the upper confidence interval for the first time, 
q=1 or 2. The VARMA(p, q) model (where p is the number 
of lag observations included in the model, also called the 
lag order and q the size of the moving average window, 
also called the order of moving average for AR and MA 
processes respectively) according to the ACF and PACF 
results: MODEL (1,1) or MODEL (1,2) where (1,1) and 
(1,2) are the orders of the VARMA model. The two were 
tested and checked for performance. 
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a)                                                             b) 

Figure 10.  ACF on first order Difference: a) production and b) rainfall 

 
Figure 11.  ACF on first order Difference: a) yield, b) area 

Table 4.  Multiple Linear Regression Results on monthly series (climate parameters) 

Dependent Variable: Rainfall R-squared:  0.618 
Model: OLS Adj. R-squared:  0.62 

Method: Least Squares F-statistic:  336.6 
  Prob (F-statistic): 0 

Df Residuals: 417 Log-Likelihood:  -2340.9 
Df Model: 2 AIC:  4688 

Covariance Type: Non-robust BIC:  4700 
 coefficient std err T P>|t| [0.025 0.975] 

Intercept 519.2 47.1 11.03 0.000 426.63 611.78 
Tmax -20.73 1.15 -17.99 0.000 -23 -18.47 
Tmin 14.25 0.88 16.25 0.000 12.52 15.97 

Omnibus: 68.860 Durbin-Watson:  1.216 
Prob(Omnibus): 0 Jarque-Bera (JB):  118.57 

Skew: 0.96 Prob(JB):  0 
Kurtosis: 4.75 Cond. No.  623 

 

 



112 Rainfall and Temperature Predictions: Implications for Rice Production in the Lower River Region of The Gambia  
 

3.3.2. Multi-linear Regression Analysis 
The analysis of monthly climate variations on 

temperatures and rainfall was performed using the 
Ordinary Least Square (OLS) method, a widely known and 
used linear regression shows correlation between variables 
and the possible interrelationship that exists between the 
dependent and independent variables as in Table 4. 

The value of adjusted R-squared (0.62) indicates that the 
overall model fits well, meaning that this model explains 
62% of the variance in the dependent variable (rainfall). 
The coefficient also unwrapped the positive (14.25) 
association between the minimum temperature and 
precipitation which means that rainfall increases with a unit 
increase in minimum temperature by 14 mm assuming that 
the maximum temperature remains constant. However, 
rainfall decreases (coefficient = -20.73) with a unit increase 
in maximum temperature by 20 mm (assuming minimum 
temperature is constant). 

A multi-linear regression was performed using the same 
OLS simple regression method to identify the effect of 
climate variation on rice production in the region using 
annual data as the rice data is annual, the results are 
presented in Table 5. The model showed that the multiple 

variables poorly explain (12%) the rice production in the 
LRR. The p-values revealed that rainfall and minimum 
temperature results are statistically non-significant in 
determining production of rice in the region while the 
maximum temperature accepts the changes with the 
dependent variable; but the model does not explain the 
variance in the dependent rice production. 

The coefficient further indicates that rainfall and 
minimum temperature could increase production of rice, 
whereas maximum temperature will decrease it by 860 ha/t 
with a unit increase. This means that an increase in average 
maximum temperature will further reduce the production 
of rice. This indicates that any variation in the rainfall 
affects rice production but the data showed that this result 
is insignificant (Wu et al., 2017). In reality, high 
temperature is a disadvantage to rice production (Sridevi 
and Chellamuthu 2015; Peng et al., 2004). One is tempted 
to say that, in case annual average temperature is good for 
rice growth, a change in the temperature may slightly 
impact the reliability of rice production. Oort & Zwart 
(2017) explained it in the terms of decline in rice 
production results from high temperatures which induce 
reduction of photosynthesis in the rice stalks. 

Table 5.  Multiple Linear Regression Results (rice Production and climate parameters) 

Dep. Variable: Productions R-squared:  0.197 

Model: OLS Adj. R-squared:  0.12 

Method: Least Squares F-statistic:  2.54 

No. Observations: 35 Prob (F-statistic): 0.07 

Df Residuals: 31 Log-Likelihood:  -301.76 

Df Model: 3 AIC:  611.5 

Covariance Type: Non robust BIC:  617.7 

 coefficient std err T P>|t| [0.025 0.975] 

Intercept 17840 16700 1.07 0.29 -16200 51900 

prec 1.46 1.21 1.21 0.24 -1 3.93 

tmax -860.97 395.56 -2.18 0.04 -1667.72 -54.22 

tmin 723.87 451.62 1.6 0.12 -197.22 1644.96 

Omnibus: 1.593 Durbin-Watson:  0.956 

Prob(Omnibus): 0.45 Jarque-Bera (JB):  0.74 

Skew: 0.31 Prob(JB):  0.69 

Kurtosis: 3.34 Cond. No.  57300 
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Table 6.  Multiple Linear Regression Results (rice Yields and climate parameters) 

Dep. Variable: Yields R-squared:  0.209 

Model: OLS Adj. R-squared:  0.13 

Method: Least Squares F-statistic:  2.73 

No. Observations: 35 Prob (F-statistic): 0.06 

Df Residuals: 31 Log-Likelihood:  -250.92 

Df Model: 3 AIC:  509.8 

Covariance Type: Non robust BIC:  516.1 

 Coefficient std err T P>|t| [0.025 0.975] 

Intercept 10320 3903.44 2.65 0.01 2362.19 18300 

prec 0 0.28 0.02 0.99 -0.57 0.58 

tmax -261.97 92.53 -2.83 0.01 -450.69 -73.24 

tmin 17.23 105.65 0.16 0.87 -198.24 232.71 

Omnibus: 0.845 Durbin-Watson:  1.144 

Prob (Omnibus): 0.66 Jarque-Bera (JB):  0.76 

Skew: -0.34 Prob (JB):  0.68 

Kurtosis: 2.73 Cond. No.  57300 

 

Table 6 shows the contribution of the climate variables 
(rainfall, Tmax, Tmin) on rice yield as obtained from OLS 
regression. Rainfall does not influence the rice yield while 
minimum temperature shows a positive influence on the 
rice yields. The high p-values of 0.99 and 0.87 respectively 
for rainfall and minimum temperature suggest that the 
changes that they could bring to the dependent variable 
(yield) are statistically insignificant; however maximum 
temperature reveals a low p-value of 0.01 and a negative 
coefficient of -261.97 which denotes a decrease in yield 
with a unit increase in maximum temperature assuming all 
the independent variables are constant. This result 
contradicts Peng et al. (2004) study which provides direct 
evidence of decreased rice yields from increased 
night-time temperature associated with global warming. In 
Welch et al. (2010), it is found that higher minimum 
temperature reduced yield, whereas higher maximum 
temperature raised it but there was no threshold in the 
maximum temperature value. 

These results of the multilinear regression using OLS 
method showed in all that there is a relationship between 
temperature and precipitation but the overall significance is 
low (as for yield and precipitation, yield and minimum 
temperature and for production and precipitation, 
production and minimum temperature), meaning the 
changes are not statistically significant at 95% (alpha = 
0.05). 

When all the variables are added to the model with 
previously dependent variables (yield and production), the 
model performs very well (93% of the data explain the rice 
production), but only the harvested area and the yields 

present significant changes and 85% of the data explain the 
rice yield with only harvested areas and productions 
showing significant changes. This shows that the rice 
production variables affect rice production in the Lower 
River Region more than the climate affects production. 

3.4. Statistical Prediction 

3.4.1. The VARMA Model 

VARMA model does not necessarily ask if the variables 
have strong influence on each other with complete 
knowledge of the strength of the relations as could require 
structural models with simultaneous equations. The 
VARMA model with order (1,1) was employed as 
parameter combinations. The ACF and PACF were applied 
to the first order difference of the series in order to 
determine the “p” and the “q” for the AR(p) and MA(q) 
models as parameters to the VARMA function in python as 
previously described. The selection of “p” was at the 
position of the lag value where the PACF chart crosses the 
upper confidence interval for the first time and the “q” 
position at the lag value where the ACF chart crosses the 
upper confidence interval for the first time. Table 10 
showed the results concerning the model and its 
performance, considering the AIC (Akaike Information 
Criterion) and BIC (Bayesian Information Criterion) that 
are both penalized-likelihood criteria used to determine not 
only the performance but also the explanation of the model 
(BIC allows consistent estimation of the underlying data 
generating process). 

 
 
 

 



114 Rainfall and Temperature Predictions: Implications for Rice Production in the Lower River Region of The Gambia  
 

Table 7.  VARMA model Results 

Variable: 'tmin', 'tmax', 'prec', 'areas', 'yields', 
'productions' No. Observations:  35 

Model: VARMA (1,1) Log Likelihood  -1030.956 

 + intercept AIC  2259.912 

Covariance Type: outer product of gradients (OPG) estimate 
BIC  2413.891 

HQIC  2313.066 

Ljung-Box (Q): 30.61, 23.68, 27.62, 28.92, 19.09, 32.07 Jarque-Bera (JB):  1.12, 1.35, 1.21, 1.94, 1.60, 3.25 

Prob(Q): 0.63, 0.91, 0.77, 0.71, 0.98, 0.56 Prob (JB):  0.57, 0.51, 0.55, 0.38, 0.45, 0.20 

Heteroskedasticity (H): 2.32, 1.54, 2.13, 0.98, 1.40, 0.60 Skew:  0.41, 0.13, 0.38, -0.25, 0.44, 0.26 

Prob(H) (two-sided): 0.16, 0.47, 0.20, 0.97, 0.57, 0.39 Kurtosis:  2.70, 2.08, 2.50, 1.96, 2.44, 4.40 

 

Figure 10.  Diagnostic of the fitted VARMA model 

Table 7 presents the characteristics of the model that was 
fitted with the dataset, showing the Akaike Information 
Criterion (AIC), the Bayesian Information Criterion (BIC) 
and the statistical distribution of the variables of the model, 
indicators of the model performance. 

Figure 10 shows the VARMA results that allows us to 
quickly generate model diagnostics and investigate for any 
unusual behaviour. The top right plot shows how close is 
the red KDE line to the N(0,1) line (where N(0,1)) is the 
standard notation for a normal distribution with mean 0 and 
standard deviation of 1). This is a fairly good indication 
that the residuals are normally distributed. The qq-plot on 
the bottom left gives the same information whereby the 

ordered distribution of residuals (blue dots) follows 
approximately the linear trend of the samples taken from a 
standard normal distribution with N(0, 1). The residuals 
over time (top left plot) does not display any obvious 
seasonality and seems to be a complete white noise. The 
autocorrelation (i.e. correlogram) plot on the bottom right, 
confirms this by showing the time series residuals (low 
correlation with lagged versions of itself). The correlogram 
is the autocorrelation plot that displays no pattern of serial 
correlation. This means that the model fairly estimates 
values with reduced or no error that travels from point to 
point over time. The Mean Squared Error (MSE) and the 
Root Mean Squared Error (RMSE) were also checked for 
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the sake of model performance. 
The Mean Squared Errors and The Root Mean Squared 

Errors in Table 8 are good enough for the model. The 
RMSE values are low considering the original value's 
range. The RMSE has the same unit as the dependent 
variable. 

Figure 11 reveals how fit the predicted values are with 

the original series. The model captures the range variations 
of all the input variables except the rainfall series that 
captures only lightly the variations (the RMSE previously 
discussed in Table 11 reveals this with a bit of high value 
compared to the range values in the series with 185.77 in a 
range of 382 - 1337 mm). 

Table 8.  MSE and RMSE of the model on the variables 

 Tmin Tmax Prec Area Yield Production 

Mean Squared Error (MSE) 0.17 0.15 34510.67 430945.98 52728.08 978304.93 

Root Mean Squared Error (RMSE) 0.41 0.39 185.77 656.46 229.63 896.09 

 

Figure 11.  Visualisation of the Model’s predicted values (2000-2015) with the original data (1981-2015) 
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Figure 12.  Future prediction values (2016-2035) 

Figure 12 revealed the trend of the predicted values and 
the original values. This trend will increase for a time and 
remains approximately constant for the rest of the period. 
This is due to the fact that statistical models could not 
capture all the trends and have some limitations to project 
long period. It could also be due to the fact that the data 
used is annual data over a relatively short period. 

3.4.2. Future impacts of climate variations on rice 
production 

Figure 13 shows the correlation of the future predicted 
values from 2016 to 2035 only. The red and degraded red 
to white colours show strong to low positive correlations 
and the blue and graduated blue to white colours show 
strong to low negative correlations. Nothing shows a causal 
relationship in this analysis. The statistical relationship 
between the series showed a strong relationship between 
rainfall and production (-0.6) and rainfall and harvested 
areas (-0.7) where the existing relationships are all negative. 
This implies that if the rainfall decreases in the future this 
will increase the rice yield. A decrease in rainfall will lead 
to an increase in the harvested area that is basically swamp 
or wetland. The production negatively correlates with 

rainfall, if the latter decreases the production increases but 
this is dependent on the harvested areas as production is 
computed using the harvested area and the yield. 

 
Figure 13.  Correlation of the predicted values (2016 - 2035) 

Table 9 shows the results of the RLM. The intercept is 
also correctly described as the mathematically mean 
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response value when all predictor variables are set to zero. 
While zero setting for predictors in a model is mostly 
impossible, this multi-linear model is even more 
impossible giving almost no meaning to intercept value 
here. The p-value for each term or variable tests the null 
hypothesis that the coefficient is equal to zero (i.e. no effect 
or no relation). The presented results revealed significant 
statistical relation between each term of the predictor 
(climate variables) and the response (yields). This shows a 
meaningful step-up to the model because any change in the 
predictor’s value is related to changes in the response 
variable. The maximum temperature has a 0.00 p-value, a 
very good relation of the latter with yields, but the relation 
is negatively recorded. The model coefficient is the mean 
change in the yields for one-unit change in each climate 
variable term while keeping other climate variables in the 
models’ constant. In the case of maximum temperature, the 
coefficient indicates that for every additional 1 °C of 
maximum temperature, it is expected a decrease of yield by 
an average of 365.172 kilograms per hectare. Similarly, the 

model indicates that any +1 °C of minimum temperature or 
+1 mm of rainfall in the region will affect the yields to 
increase by 160 Kg/ha and a decrease of ~0.3 Kg/ha. 

Table 10 presents also a statistically significant 
correlation between climate parameters and the average 
rice production in the region. But the robust linear model 
reveals here a rather positive relationship of rainfall on the 
production (about 2 metric tonnes will be added). The 
maximum temperature is still penalizing heavily the rice 
production while the minimum temperature will be a 
relatively similar gain. 

The following Table 11 reveals that the harvested areas 
will reduce if the maximum temperature increases (+1 °C 
for -219.9 ha) as well as the precipitation, +1 mm will lead 
to a decrease of ~1.5 ha. Only minimum temperature will 
remain the good climatic factor for good rice production in 
the Lower River Region, in The Gambia and this must be 
studied to determine the threshold for Tmin too. About 
404.8 ha will add to the harvest area if a 1 °C is recorded 
high. 

Table 9.  Yield and climate variables Robust Linear Regression Model Results 

Model: RLM Df Residuals: 51 

Dependent Variable: Yields 
Norm: AndrewWave 

Scale Est.: Mad 
No. Observations: 55 Cov. Type: H1 

Df Model: 3 Scale: 101.93 
 Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 11346.4738 1563.9046 7.2552 0.0000 8281.2770 14411.6705 
Prec -0.2927 0.1131 -2.5871 0.0097 -0.5144 -0.0710 

Tmax -365.1725 36.2201 -10.0820 0.0000 -436.1625 -294.1824 
Tmin 160.6037 42.1512 3.8102 0.0001 77.9888 243.2185 

Table 10.  Productions and climate variables Robust Linear Regression Model Results 

Model: RLM Df Residuals: 51 

Dependent Variable: Productions 
Norm: AndrewWave 

Scale Est.: Mad 
No. Observations: 55 Cov. Type: H1 

Df Model: 3 Scale: 643.04 
 Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 14154.5836 12836.2729 1.1027 0.2702 -11004.0490 39313.2161 
Prec 2.0492 0.9286 2.2068 0.0273 0.2292 3.8691 

Tmax -748.5360 297.2883 -2.5179 0.0118 -1331.2105 -165.8616 
Tmin 684.0995 345.9702 1.9773 0.0480 6.0103 1362.1886 

Table 11.  Areas and climate variables Robust Linear Regression Model Results 

Model: RLM Df Residuals: 51 

Dependent Variable: data_pred_2035.areas 
Norm: AndrewWave 

Scale Est.: Mad 
No. Observations: 55 Cov. Type: H1 

Df Model: 3 Scale: 499.05 
 Coef. Std.Err. z P>|z| [0.025 0.975] 

Intercept 2867.9896 8245.5346 0.3478 0.7280 -13292.9613 19028.9406 
Prec -1.5185 0.5965 -2.5458 0.0109 -2.6876 -0.3494 

Tmax -219.8416 190.9668 -1.1512 0.2496 -594.1296 154.4463 
Tmin 404.7787 222.2381 1.8214 0.0686 -30.8000 840.3575 
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a                                                                  b 

 
c 

Figure 14.  Robust Regression Normality Q-Q plot: a Yields; b Productions; c Areas 

Figure 14 confirms the normality of the linear model 
considering the data that were used. The model performs 
well as for the multivariate analysis. They perform very 
similarly but the production model seems to react better to 
the climate parameters than the Yields and the harvested 
areas. 

The climate parameters trends and their effects on rice 
production considered the rice yields, harvested area and 
the annual rice production. The VARMA model predicted 
the variables into the future (2035) using the historical 
records of the variables. The correlation coefficient results 
of the future variables revealed very high positive 
correlations between rainfall and yield, harvested area and 
production. But there the results revealed also a negative 
correlation between maximum and minimum temperatures 
(-0.85). This is observed with rainfall and harvested area, 
harvested area and yield, production and rainfall as well as 
yield. This gives an idea about how rice production 
variables used in this analysis will behave without knowing 
which variable triggers the change. Generally, climate 

parameters have very low correlations with rice variables 
except for rainfall that has a negatively strong relationship 
with harvested area and positively strong correlation with 
yield. The RLM unveiled their contributions. 

The increasing trend of the maximum temperature and 
the decreasing trend of the minimum temperature during 
the analysis of these two variables will increase the diurnal 
temperature range (DTR, the difference between daily 
maximum and minimum temperature) and lead to health 
issues that will somehow affect rice production in many 
ways (Lobell, 2007). 

Rainfall increases when the yield decreases but 
production and harvested areas were increasing as well. 
According to the OECD, the importance of crop production 
is related to harvested area, returns per hectare (yields) and 
quantities produced. Crop yields are then, the harvested 
production per unit of harvested area for crop products. 
Yield data are not recorded, but they are computed by 
dividing the production records by the harvested area. The 
OECD specified the intervention of the genetic potential, 
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the sunlight's amount received, the water and the nutrients 
absorbed by the crop, the presence of weed and pests in 
crop production. This discloses that climate parameters 
only cannot define very well the effect on crop production 
and the increase in the rainfall of the LRR will not 
necessarily increase the yields. The harvested area and the 
production have also increased from 2008 as well as the 
rainfall while the yields were decreasing. 

The relationship between maximum temperature and the 
rice variables is very critical as the sunlight is one of the 
criteria that defines the rice yield and production. The 
temperature is recording extreme values (up to 47 °C 
monthly average); the maximum temperature is affecting 
the rice production in the region. If this continues to 
increase as the robust linear regression shows, the rice 
production will reduce considerably. The rice genetics 
must be reviewed in this situation and adapted to climate 
variability and especially the increase in the maximum 
temperature. It has been shown in extreme temperature 
analysis that the minimum temperature under climate 
change may reduce causing very cold days and cold waves 
(Gu et al., 2008; Kodra, Steinhaeuser, & Ganguly, 2011; 
Rahmstorf & Coumou, 2011) and this is observed in this 
case where the minimum temperature is not increasing but 
varies over the year without significant change over the 
time. This will be beneficial for the rice production as the 
minimum temperature does not really change over the year 
(only slight variations were recorded), that is why this 
condition will continue to be good for rice production and 
the RLM will be showing an increase of rice yield, 
production and even the harvested area per unit increase of 
this climate variable. 

An important factor in the results of the model to 
highlight is that when the effects of the maximum and the 
minimum temperatures are compared, the effects of the 
first are more important. This could lead to a general 
decrease of rice production in the region if the same 
conditions are maintained. Climate change according to 
studies (Arroyo-Rodríguez, Saldaña-Vázquez, Fahrig, & 
Santos, 2017; Lenderink & Van Meijgaard, 2008; 
Rahmstorf & Coumou, 2011; Schär et al., 2004; 
Seneviratne, Donat, Mueller, & Alexander, 2014; Sutton et 
al., 2010; Vuuren et al., 2009), is anticipated to increase 
temperatures in the future which, in turn  may strongly 
affect rice production. 

The results here are a warning toward climate change, a 
serious phenomenon to which the West African Region has 
always been very vulnerable, knowing that our countries 
are agrarian based economies. 

4. Conclusions 
Climate change should be a focus in The Gambia as well 

as in the other countries of West Africa. Staple crops 
should be adaptable to the extreme climatic conditions that 

are expected in the very near future. Cultural practices 
should also be reviewed with the agricultural techniques to 
store water and use it later for irrigation, because while the 
maximum temperature is increasing, flash floods might 
occur the region; they are known to destroy crops; hence, 
affecting productions and yields. 

There is a need for improved rice varieties that are early 
maturing, high yielding, heat tolerant and saline tolerant 
varieties that suit the new climatic conditions that will 
prevail in the region in the future. Global and local rice 
production has to meet future population demands; hence 
there is a need for more research in the area. With reference 
to temperature (especially the maximum temperature), 
there are mitigation programs like the Nationally 
Determined Contribution (NDCs) previously known as the 
Intended Nationally Determined Contribution (INDCs) for 
every country, and The Gambia as well as other countries 
need to carefully implement them to avoid future warming 
of the climate while combating the impacts with adaptation 
measures. 

More studies on the effect of climate change on rice 
production are needed. It will be good to further this study 
by combining in the future more of the parameters defined 
by the OECD and the FAO for rice production and yields in 
order to improve on the model, and the use of more 
sophisticated models in that case as machine learning 
models are based on more probabilistic assumptions. A 
dynamical model in the region will be a plus to future 
studies in the LRR of The Gambia. 
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