Predicting Discharge in Catchment Outlet Using Deep
Learning: Case Study of the Ansongo-Niamey Basin

Julien Yise Peniel Adounkpe * Eric Adechina Alamou
Université Joseph Ki-Zerbo, Burkina Faso Université d’ Abomey-Calavi, Benin
Belko Abdoul Aziz Diallo Abdou Ali

WASCAL Competence Centre, Burkina Faso AGRHYMET Regional Centre, Niger

Abstract

Hydrological models are one of the key challenges in hydrology. Their goal is to
understand, predict and manage water resources. Most of the hydrological models
so far were either physical or conceptual models. But in the past two decades,
fully data-driven (empirical) models started to emerge with the breakthroughs
of novel deep learning methods in runoff prediction. These breakthroughs were
mostly favored by the large volume, variety and velocity of water-related data.
Long Short-Term Memory and Gated Recurrent Unit neural networks, particularly
achieved the outstanding milestone of outperforming classic hydrological models
in less than a decade. Moreover, they have the potential to change the way hydro-
logical modeling is performed. In this study, precipitation, minimal and maximum
temperature at the Ansongo-Niamey basin combined with the discharge at Ansongo
and Kandadji were used to predict the discharge at Niamey using artificial neural
networks. After data preprocessing and hyperparameter optimization, the deep
learning models performed well with the LSTM and GRU respectively scoring a
Nash-Sutcliffe Efficiency of 0.933 and 0.935. This performance matches those
of well-known physically-based models used to simulate Niamey’s discharge and
therefore demonstrates the efficiency of deep learning methods in a West African
context, especially in Niamey which has been facing severe floods due to climate
change.
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1 Introduction

According to|Aich et al.|(2016)), in the Niger Basin (particularly in the Middle Niger Basin), extensive
catastrophic flooding has increased drastically during the last two decades, with a high frequency and
at large extent in the city of Niamey. As part of possible mitigation solutions, finding means to improve
hydrological models could alleviate the suffering of the population by improving the existing early
warning systems. Many hydrological models have been deployed to predict the discharge in Niamey.
The models studied were physically-based hydrological models such as the Niger-HYdrological
Predictions for the Environment (Niger-HYPE) by |Andersson et al.| (2017), Interaction between
Soil Biosphere and Atmosphere-Total Runoff Integrating Pathway (ISBA-TRIP) by (Casse| (2015),
Soil and Water Assessment Tool (SWAT) by [Pomeon et al.|(2018)) and HydroGeoSphere (HGS) by
Boko et al.|(2020). Few hydrological models have performed well in Niamey at discharge prediction
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(section[3)). Artificial intelligence (AI) Al based models which are fully data driven appear to be able
to overcome deficiencies of physically-based hydrological models (Shen|(2018)).

In hydrology, deep learning (DL) is a subset of machine learning well known for predicting and
estimating floods, monitoring drought accurately, analyzing atmospheric imaging, estimating tropical
cyclones and their precursors, and predicting other hydrological processes (Ardabili et al.|(2019)).
Hochreiter and Schmidhuber| (1997), the creators of the Long Short-Term Memory (LSTM) neural
networks, proved that their recurrent neural network structure was an innovative DL method for
achieving high accuracy time series prediction and reducing CPU cost. Due to their cell state, LSTMs
can learn and store long-term dependencies of the input-output relationship. The Gated Recurrent
Unit (GRU) is an improved version of the LSTM proposed by |Chung et al.| (2014) and able to
outperform its predecessor. Furthermore, Shen|(2018) demonstrates that DL can help address several
major new and old challenges facing research in water science, and hydrological modeling is no
exception.

Intending to look for alternative hydrological models to better face climate change damages, this
study focuses on simulating efficiently the Niger river discharge in the city of Niamey using artificial
neural networks. The methodology followed includes (i) preprocessing climate and hydrological
data, (ii) optimizing LSTM and GRU hyperparameters, and (iii) training and testing the DL models.
The following sections progressively explore the study conducted by depicting the area of study,
describing the data used, sharing the methods and techniques deployed and discussing the results
obtained.

2 Study Area

The Ansongo-Niamey basin is a transborder catchment located in the middle region of the Niger
basin between Burkina Faso, Mali and Niger. Ansongo (Mali) - the outlet of the upper Niger basin -
was considered the upstream of this study area. The Ansongo-Niamey basin was chosen as study
area because it would prove challenging to collect data of the upper Niger basin.

This basin’s runoff regime is affected by recurring floods which flow from different geographic
locations with distinct characteristics. The first flood is the annual peak during the rainy season
(July to November) in the Ansongo-Niamey basin called the “Red Flood” or “Sahelian Flood”. The
second one is the Guinean Flood, which originates from the headwaters of the Niger in the Guinean
highlands during the rainy season between July and November (Aich et al.[(2016)). Check appendix
[6] for figures illustrating study area.

3 Data

Precipitation, minimum and maximum temperature data were provided by AGRHYMET Regional
Centre (ARC). The river discharge data of the Ansongo, Kandadji and Niamey were provided by
ARC and Niger Basin Authority (NBA). These observation datasets are daily records dating from
June 1981 to December 2010. A digital elevation model of West Africa was obtained from the
Consortium for Spatial Information (CGIAR-CSI).

4 Methods and Techniques

This work was executed using open-source tools such as QGIS for delineation and mapping of the
Ansongo-Niamey basin, Anaconda for package management and deployment, Jupyter Notebook
as programming interface and Python modules (Numpy, Pandas, TensorFlow, Matplotlib, Scikit-
Optimize, ...).

The data processing was done in 5 steps: delineation of the Ansongo-Niamey basin, transformation
of the climate data, transformation of the hydrological data, analysis of the hydrological data and
merging climate and hydrological data. The final output used is a dataframe of 10806 rows and 7
columns with the number of rows representing the number of days of observation and the number
of columns representing the date, input and output variables (precipitation, maximum temperature,
minimum temperature, discharge at Ansongo, discharge at Kandadji and discharge at Niamey).



Hyperparameter optimization refers to performing a search to discover the set of specific model
configuration arguments that result in the best performance of the model on a specific dataset. In this
case, the goal was to minimize the cost function of the LSTM and GRU models after 40 iterations on
the validation sets. The selected neural networks parameters to optimize were the learning rate, the
number of unit, the number of epoch and the batch size.

Before loading the data into the DL models, a few transformations were applied such as data
normalization, transformation from time series to supervised learning series and data splitting into
training, validation and testing sets. The optimizer used was the Adam optimizer and its learning
rate was obtained from the hyperparameter optimization process. The chosen loss function was the
mean square error. For the training phase of the DL models, the number of epochs was set to 100
epochs to have the same scale of comparison between models. The batch size corresponded to the
value obtained after hyperparameter optimization. The evaluation of the models was done using the
test dataset. We evaluated the models by analyzing the curve of the loss function over the number of
epochs (appendix [6). To evaluate the performance of river flow forecasting models, the Nash-Sutcliffe
Efficiency (NSE) was used as a statistical method.

5 Results and Discussion

The table below presents values of the selected parameters after hyperparameter optimization.

Table 1: Optimized hyperparameters obtained

Model Learning rate Number of unit Number of epoch  Batch size

LSTM 0.0156 30 500 128
GRU 0.0100 100 100 100

Both DL models performed better with lower learning rates (between 10~ and 3.107?) and smaller
number of units (not more than 300). The number of epoch and the batch size have lower influence
on the model although higher number of epochs generally slightly improves the predictions.

The DL models performed well with the testing data ranging from June 2006 to December 2010. The
LSTM and the GRU scored respectively 0.933 and 0.935 for the NSE test. The GRU performed a
little better than the LSTM at predicting discharges (Figure[T). The downside was that the discharge
peaks were underestimated by the models.

Few studies were published on surface discharge prediction in Niamey. However, four classi-
cal/physical hydrological models were identified to be compared to the DL models’ performance.
Below is a table of the studies found which presents the model name, its input data (excluding
precipitation, temperature and discharge) and its performance during a validation period.

Table 2: Performance of hydrological models in Niamey

Model Paper Input data Validation period  Performance

Niger-HYPE |Andersson Topography, land use, soil, 1995-2010 NSE: 0.72
et al. (2017) lakes, reservoirs

ISBA-TRIP Casse Radiation, wind speed, air 2003-2012 NSE: 0.93
(2015) pressure, air humidity

SWAT Pomeon Topography, land use, soil 2008-2013 KGE: 0-0.5
et al.| (2018))

HGS Boko et al| Soil moisture, surface water 1980-2005 Good
(2020) depth, land use, evaporation

KGE: Kling Gupta Efficiency
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Figure 1: Discharge predictions of LSTM and GRU models in Niamey from June 2006 to December
2010

Physically-based models predicting Niamey’s discharge had a good performance. Generally, the
more data is fed into these models, the better the results. The DL models match the performance of
their predecessor with fewer input data. The execution of the DL models required low computational
resources (was run on a CPU in less than five minutes). Only the hyperparameter optimization
process was time-consuming (up to one day of runtime) because of the number of epoch set as a
hyperparameter. Artificial neural networks are indeed promising in the field of hydrology.

6 Conclusion

This research investigated the potential of using LSTM and GRU neural networks for simulating
discharge from precipitation, temperature and upstream discharge observations. The work confirms
that the DL models trained and tested were able to achieve high accuracy and efficiency while
maintaining a low computational cost and using fewer data. As expected, the GRU performed slightly
better than the LSTM. The trained DL models matched and even outperformed classical hydrological
models at predicting historical surface discharge in Niamey. These results represent a new milestone
towards the development of Al-based hydrological models as alternatives to classical/physical models.

Meanwhile, better performance could have been obtained if we replaced the number of epochs and
the batch size with other hyperparameters in the optimization phase. The extreme discharge could
have been better simulated if additional variables were added to the model (data-centric approach) or
if the model was tweaked in a manner that predicts extreme events easier (model-centric approach).
The next step would be to exploit DL models to their extent by studying their regionalization in the
Niger basin by integrating catchments’ physical characteristics.
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Figure 2: Map of Ansongo-Niamey basin
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Figure 3: Hydrographs of Ansongo, Kandadji and Niamey for June 1991 to Mai 1992

Statistical Method

The Nash-Sutcliffe Efficiency (NSE) measures the ability to predict variables different from the mean
and gives the proportion of the initial variance accounted for by the model. The NSE values ranges
from —oo to 1 with the perfect model having the value 1.

n

> (i —0:)?
NSE=1-=1

_1(yi —%:)?

In the equations, y; represents the observed discharge at a time t, y; represents the simulated discharge
at a time t, y; is the mean of the observed discharge and n is the number of observations.



Loss Fonction

The loss curve trend shows that the DL models converged reasonably quickly and both train and
validation performance remained equivalent. The performance and convergence behavior of the
model suggest that mean squared error is a good match for a neural network learning this problem.

—— L5TM Training
030 LSTM Walidation
—— GRU Training
—— GRU Validation
025
0.20
w
w
3 015
1
|
010 \
0.05 )

0 20 40 &0 80 100

Epoch

Figure 4: Loss function of LSTM and GRU models
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