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ABSTRACT 
 

In this paper, PM2.5 concentrations in Ouagadougou are estimated using satellite-based Aerosol 

Optical Depth and Meteorological Parameters. Firstly, Simple Linear Regression (SLR), Multiple 

Linear Regression (MLR), Decision Tree (DT), Random Forest (RF), and eXtreme Gradient 

Boosting (XGBoost) are developed using the available labeled data in the city. The XGBoost 

model outperforms all the models with a coefficient of determination (R2) of 0.87 and a root-mean-

square error (RMSE) of 15.8 µg/m3. Given the outstanding performance of the supervised 

XGBoost model, it is upgraded by the incorporation of a semi-supervised algorithm to make use 

of the lots of unlabeled data in the city and allow for the extensive estimation of PM2.5. The 

developed semi-supervised XGBoost model has an R2 of 0.97 and an RMSE of 8.3 µg/m3. The 

results indicate that the estimated PM2.5 concentrations in the city are 2 to 4 times higher than the 

World Health Organization (WHO) 24-hour limit of 15 µg/m3 in the rainy season and 2 to 22 times 

higher than the WHO 24-hour limit in the dry season. The results also reveal that the average 

annual estimated PM2.5 concentrations are 11 to 14 times higher than the WHO average annual 

standard of 5 µg/m3. Finally, the results reveal higher PM2.5 concentrations in the center and 

industrial areas of the city compared to the other areas. There should be an improvement in traffic 

management in the central areas of the city and Industries should implement cleaner production 

methods. 

Keywords: Air pollution; Fine Particulate Matter; Supervised Machine Learning; Fine Particulate 

Matter Spatial Distribution; Ouagadougou. 
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RÉSUMÉ 
Dans cet article, les concentrations de PM2,5 à Ouagadougou sont estimées à l'aide de la épaisseur 

optique des aérosols et des paramètres météorologiques par satellite. Tout d'abord, la régression 

linéaire simple (SLR), la régression linéaire multiple (MLR), l'arbre de décision (DT), la forêt 

aléatoire (RF) et l'amplification de gradient extrême (XGBoost) sont développées à l'aide des 

données étiquetées disponibles dans la ville. Le modèle XGBoost surpasse tous les modèles avec 

un coefficient de détermination (R2) de 0,87 et une erreur quadratique moyenne (RMSE) de 15,8 

µg/m3. Compte tenu des performances exceptionnelles du modèle supervisé XGBoost, il est 

amélioré par l'incorporation d'un algorithme semi-supervisé pour exploiter les nombreuses 

données non étiquetées de la ville et permettre une estimation approfondie des PM2,5. Le modèle 

XGBoost semi-supervisé développé a un R2 de 0,97 et un RMSE de 8,3 µg/m3. Les résultats 

indiquent que les concentrations estimées de PM2,5 dans la ville sont 2 à 4 fois supérieures à la 

limite de 24 heures de l'Organisation mondiale de la santé (OMS) de 15 µg/m3 pendant la saison 

des pluies et 2 à 22 fois supérieures à la limite de l'OMS 24 -limite d'heures en saison sèche. Les 

résultats révèlent également que les concentrations moyennes annuelles estimées de PM2,5 sont 11 

à 14 fois supérieures à la norme annuelle moyenne de l'OMS de 5 µg/m3. Enfin, les résultats 

révèlent des concentrations de PM2,5 plus élevées dans le centre et les zones industrielles de la ville 

par rapport aux autres zones. Il devrait y avoir une amélioration de la gestion du trafic dans les 

zones centrales de la ville et les industries devraient mettre en œuvre des méthodes de production 

plus propres. 

 

Mots clés: Pollution de l'air; particules fines; Apprentissage automatique supervisé; Répartition 

spatiale des particules fines; Ouagadougou. 
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ACRONYMS AND ABBREVIATIONS 
 

ANAM           : Agence Nationale de la Météorologie 

ANN              : Artificial Neural Networks 

AOD              : Aerosol Optical Depth 

BAM-1020    : Met One Beta Attenuation Monitor 

BC                 : Black Carbon 

BiLSTM        : Bidirectional Long Short-term Memory 

BLH               : Boundary Layer Height 

BTEX            : Benzene, Toluene, Ethylbenzene, and Xylene 

CCD               : Cold Cloud Duration 

CHIRPS         : Climate Hazards Group InfraRed Precipitation with Station data 

CV                 : Cross-Validation 

DNN              : Deep Neural Network 

DT                 : Decision Tree 

EDXRF          : Energy Dispersive X-ray Fluorescence 

EMD             : Empirical Mode Decomposition 

GEE              : Google Earth Engine 

GWR            : Geographic Weighted Regression 

KNN             : K-Nearest Neighbors 

LST              : Land Surface Temperature 

MAE            : Mean Absolute Error 

MAIAC        : Multi-Angle Implementation of Atmospheric Correction 

MLR            : Multiple Linear Regression 

MODIS        : Moderate Resolution Imaging Spectroradiometer 

NO2                    : Nitrogen Dioxide 

PBLH           : Planetary Boundary Layer Height 

PM               : Particulate Matter 

PM1                     : Particulate Matter with a diameter less than 1 

PM10                   : Particulate Matter with a diameter less than 10 

PM2.5                  : Fine Particulate Matter with a diameter less than 2.5 
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Precip           : Precipitation 

R2                          : Coefficient of Determination 

RF                : Random Forest 

RH               : Relative Humidity 

RMSE          : Root-Mean-Square Error 

RoI               : Region of Interest 

SLR              : Simple Linear Regression 

SO2                      : Sulfur Dioxide 

SVM            : Support Vector Machine 

Temp            : Temperature 

UNDP          : United Nations Development Programme 

US EPA        : United States Environmental Protection Agency 

USGCRP      : United States Global Change Research Program 

WD               : Wind Direction 

WHO            : World Health Organization 
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XGBoost       : eXtreme Gradient Boosting 

 
 

 

 

 

 

 

 

 

 

 



vii 
 

SYNOPSIS 
 

ACKNOWLEDGEMENTS ................................................................................... ii 

ABSTRACT ............................................................................................................ iii 

RÉSUMÉ ................................................................................................................. iv 

ACRONYMS AND ABBREVIATIONS ................................................................ v 

SYNOPSIS ............................................................................................................. vii 

LIST OF TABLES ............................................................................................... viii 

LIST OF FIGURES ............................................................................................... ix 

INTRODUCTION .................................................................................................... 1 

CHAPTER 1: LITERATURE REVIEW .............................................................. 5 

CHAPTER 2: MATERIALS AND METHOD ................................................... 16 

CHAPTER 3: RESULTS AND DISCUSSION ................................................... 39 

CONCLUSION ...................................................................................................... 66 

BIBLIOGRAPHY REFERENCES ...................................................................... 69 

APPENDICES .......................................................................................................... I 

 

 

 

 

 

 

 

 

 

 



viii 
 

 LIST OF TABLES 

 

Table 1: Summary of the satellite weather parameters downloaded ........................................... 25 

Table 2: Pearson correlation coefficients between observed and satellite weather parameters at 

Ouagadougou International Airport. ............................................................................................. 43 

Table 3:  Summary of the Pearson correlation coefficients between PM2.5 and AOD and 

corrected satellite weather parameters at Ouaga 2000. ................................................................. 48 

Table 4: Summary of the performance of all models................................................................... 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF FIGURES 

 

Figure 1: Location of Burkina Faso and Ouagadougou in Africa................................................ 18 

Figure 2: The sixteen (16) locations in Ouagadougou where the satellite data were extracted .. 18 

Figure 3: AOD Parameter alone as model input .......................................................................... 31 

Figure 4: AOD and weather Parameters as model input .............................................................. 32 

Figure 5: Semi-supervised learning in a Nutshell ........................................................................ 35 

Figure 6: Semi-supervised XGBoost ........................................................................................... 36 

Figure 7: Hourly profile of PM2.5 at the Ouaga 2000 .................................................................. 40 

Figure 8: PM2.5 and AOD ............................................................................................................. 41 

Figure 9: Observed precipitation and CHIRPS precipitation ...................................................... 41 

Figure 10: Observed Temperature and MODIS temperature ...................................................... 42 

Figure 11: Observed parameters and Era5-Land Parameters ...................................................... 43 

Figure 12: Simple linear models for correcting satellite data ...................................................... 44 

Figure 13: PM2.5 and Corrected CHIRPS Precipitation ............................................................... 45 

Figure 14: PM2.5 and corrected MODIS LST .............................................................................. 46 

Figure 15: PM2.5 and corrected Era5-Land parameters ............................................................... 47 

Figure 16: Statistical Regression Models .................................................................................... 49 

Figure 17: Only MODIS AOD as input parameter in nonlinear models ..................................... 50 

Figure 18: All parameters as input in models .............................................................................. 52 

Figure 19: Nonlinear models feature importance ........................................................................ 52 

Figure 20: Semi-supervised XGBoost Model performance ........................................................ 53 

Figure 21: Average of the daily and monthly trend of estimated PM2.5 in Ouagadougou ........... 55 

Figure 22: Average yearly trend of estimated PM2.5 in Ouagadougou ........................................ 56 

Figure 23: Spatial distribution of estimated PM2.5 in dry season 2000-2005 .............................. 57 

Figure 24: Spatial distribution of estimated PM2.5 in rainy season 2000-2005............................ 58 

Figure 25: Spatial distribution of estimated PM2.5 in rainy season 2006-2011 ........................... 60 

Figure 26: Spatial distribution of estimated PM2.5 in rainy season 2006-2011............................ 61 

Figure 27: Spatial distribution of estimated PM2.5 in dry season 2012-2017 .............................. 62 

Figure 28: Spatial distribution of estimated PM2.5 in dry season 2012-2017 .............................. 63 



x 
 

Figure 29: Spatial distribution of estimated PM2.5 in dry season 2018-2022 .............................. 64 

Figure 30: Spatial distribution of estimated PM2.5 in rainy season 2018-2022............................ 65 

Figure 31: Spatial distribution of estimated PM2.5 in 2000 ............................................................. I 

Figure 32: Spatial distribution of estimated PM2.5 in 2001 ............................................................. I 

Figure 33: Spatial distribution of estimated PM2.5 in 2002 ............................................................ II 

Figure 34: Spatial distribution of estimated PM2.5 in 2003 ............................................................ II 

Figure 35: Spatial distribution of estimated PM2.5 in 2004 ............................................................ II 

Figure 36: Spatial distribution of estimated PM2.5 in 2005 .......................................................... III 

Figure 37: Spatial distribution of estimated PM2.5 in 2006 .......................................................... III 

Figure 38: Spatial distribution of estimated PM2.5 in 2007 .......................................................... III 

Figure 39: Spatial distribution of estimated PM2.5 in 2008 .......................................................... IV 

Figure 40: Spatial distribution of estimated PM2.5 in 2009 .......................................................... IV 

Figure 41: Spatial distribution of estimated PM2.5 in 2010 .......................................................... IV 

Figure 42: Spatial distribution of estimated PM2.5 in 2011 ........................................................... V 

Figure 43: Spatial distribution of estimated PM2.5 in 2012 ........................................................... V 

Figure 44: Spatial distribution of estimated PM2.5 in 2013 ........................................................... V 

Figure 45: Spatial distribution of estimated PM2.5 in 2014 .......................................................... VI 

Figure 46: Spatial distribution of estimated PM2.5 in 2015 .......................................................... VI 

Figure 47: Spatial distribution of estimated PM2.5 in 2016 .......................................................... VI 

Figure 48: Spatial distribution of estimated PM2.5 in 2017 ......................................................... VII 

Figure 49: Spatial distribution of estimated PM2.5 in 2018 ......................................................... VII 

Figure 50: Spatial distribution of estimated PM2.5 in 2019 ......................................................... VII 

Figure 51: Spatial distribution of estimated PM2.5 in 2020 ....................................................... VIII 

Figure 52: Spatial distribution of estimated PM2.5 in 2021 ....................................................... VIII 

Figure 53: Spatial distribution of estimated PM2.5 in 2022 ....................................................... VIII 

 

 

 



 

1 
 

INTRODUCTION 
 

    Background 
 Air pollution is an environmental risk affecting human health and has negative effects on 

the climate, biodiversity, and ecosystems. Increasing air quality will improve our environment and 

health, and aid development (Fisher et al., 2021). Nearly all of the world's population (99 %) 

breaths unhealthy air that exceeds World Health Organization (WHO) air quality standards. An 

estimated 7 million premature deaths annually are attributed to air pollution (WHO, 2021). In 

Africa in 2019, air pollution was the cause of 1.1 million deaths (WHO, 2021). Air pollution 

contributes to approximately 780,000 premature deaths annually in Africa (WHO, 2021). 

According to Cohen et al. (2005), fine particulate matter (PM2.5) is the greatest health-relevant 

measure of urban air quality and is frequently used to determine international standards on air 

quality. PM2.5 are particles with an aerodynamic diameter of 2.5 μm or less. The diameters of the 

bigger particles in the PM2.5 size range would be approximately thirty times smaller than that of a 

human hair (Rushingabigwi et al., 2020).  

 The main sources of fine particles are the exhausts of cars, trucks, buses, and off-road 

vehicles (such as construction equipment and locomotives), as well as other processes that involve 

the burning of fuels like wood, heating oil, or coal, and natural sources like the dust storms from 

the Sahara Desert and forest fires (Rushingabigwi et al., 2020). In the atmosphere, fine particles 

can also result from the reaction of gases or droplets from sources like power plants. These 

chemical processes might take place hundreds of kilometers from the source of the pollutants 

(Rushingabigwi et al., 2020).   

 The 24-hour amount of PM2.5 is taken into account when determining the health effects of 

exposure. The WHO guidelines exposure limit is 15 µg/m3 for a 24-hour period and 5 µg/m3 

annually (WHO, 2021). According to the United States Environmental Protection Agency (US 

EPA), PM2.5 at or below 12 µg/m3 is regarded as healthy with little to no danger from exposure 

(US EPA, 2012). The air is deemed harmful if the quantity rises above 35 µg/m3 over the course 

of a 24-hour period and can be problematic for persons who already have breathing problems (US 

EPA, 2012).   
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 Despite the risks to public health posed by this condition, air quality measures have lately 

ceased or been halted, particularly in sub-Saharan Africa. The implementation of systematic PM 

data collection will enable the creation of programs to minimize the burden of air pollution on 

health as well as the formulation of urban planning and transportation policy in relation to air 

quality and health (Petkova et al., 2013). There is a link between daily ranges of particulate matter 

concentration and daily mortality, according to studies carried out in numerous locations around 

the world (Liu et al., 2019). Fine and ultrafine particulate matter appears to be linked to more 

severe diseases due to their ability to penetrate the deepest portions of the airways and more 

quickly enter circulation (Kelishadi & Poursafa, 2010).  

 Climate change and planetary warming might make things worse (USGCRP, 2009). 

Annual mean levels of coarse and fine particles published in the limited studies undertaken in 

Africa showed that pollution levels frequently exceed international recommendations (Petkova et 

al., 2013). Beyond its effects on health, PM has both cooling and warming effects on the planet's 

temperature (Solanki & Pathak, 2022), therefore research into this topic would help us better 

comprehend our climate system.  

Problem Statement 
 Data on air quality are crucial for making decisions and assessing the effects of air quality 

on human health and the environment in the future. Data on air pollution would be greatly helpful 

in planning our cities, traffic patterns, and even in creating laws and regulations to lessen our 

carbon footprint (Babu Saheer et al., 2022). Few prior research in Ouagadougou have revealed that 

the city experiences excessive quantities of finer airborne particles, above WHO standards 

(Etyemezian et al., 2005; Lindén, 2011; Nana et al., 2012; Ouarma et al., 2020).  

 The major causes of air pollution in Ouagadougou are highly polluting traffic fleets with a 

high percentage of two-stroke motor vehicles, the widespread use of biomass burning for cooking, 

and frequently unregulated industry (Nana et al., 2012). Unpaved roads are a key source of road 

dust in the city during the dry season (Etyemezian et al., 2005). Another major source of airborne 

dust in the city is dust that has been transported from deserts and other arid regions (Etyemezian 

et al., 2005; Lindén, 2011). According to research, particulates in desert dust are hazardous to 

human health on a global scale. Particularly, the aerosolized dust from the desert is frequently 

linked to conditions like pneumonia and other health risks (Aili & Oanh, 2015). The urban climate 
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and air pollution in Ouagadougou are affected by seasonal changes in the regional climate (Lindén 

et al., 2012).  

 Despite the fact that particulate air pollution in Ouagadougou has more severe impacts, 

there are not many air monitoring stations. This is due to the limited financial means available to 

install these stations. Also, due to the few stations in the city, the study of the spatial distribution 

of PM2.5 in the city is limited. In general, relatively few research on fine particle air pollution in 

Ouagadougou has been done due to a lack of data and monitoring stations. Understanding the 

correlation between satellite data, particularly AOD, meteorological parameters, and the 

concentration of PM2.5 at the earth's surface in the city will help in developing models to improve 

the study of PM2.5. However, surface PM2.5 data in the city is sparse (small labeled data) but with 

lots of unlabeled data. Therefore, developing a model that makes use of the small labeled data 

(independent variables with corresponding PM2.5 data) and the lots of unlabeled data (independent 

variables without corresponding PM2.5 data) for estimating PM2.5 would be very useful for 

extensive study of PM2.5 and help in air quality decision-making in the city.  

 In this work, firstly, five models (simple linear regression (SLR), multiple linear regression 

(MLR), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost)) 

would be built based on the available labeled data. The best-performing model would be upgraded 

by the incorporation of a semi-supervised algorithm to develop a semi-supervised model that 

makes use of the lots of unlabeled data with the small amount of labeled data in the city. The model 

would then be used with AOD and corrected satellite weather parameters at other locations with 

unavailable air monitoring stations in the city to estimate daily PM2.5. The spatiotemporal 

variations of PM2.5 in the city would be studied to understand their spatial distributions and growth 

over time. According to the literature research, Ouagadougou's air quality data challenges have not 

yet been solved using machine learning methods. Consequently, this is the initial effort.  

Research Questions, Hypothesis, and Objectives 

 Research Questions 
The main question behind this research is: how can fine particulate air pollution concentrations 

in Ouagadougou be estimated?  

From the above main question, the following two (2) specific questions are obtained: 



4 
 

• Specific 1: How can we develop an effective model for estimating fine particulate air 

pollution from satellite-based aerosol optical depth and meteorological parameters using a 

small amount of labeled data and lots of unlabeled data in Ouagadougou? 

• Specific 2: What are the Spatiotemporal variations of fine particulate air pollution 

concentrations in Ouagadougou? 

 Research Hypothesis  
Based on the research questions, some hypotheses are made. So, each research question has a 

corresponding hypothesis. 

• Main: Fine particulate air pollution concentrations in Ouagadougou can be estimated using 

satellite-based aerosol optical depth and meteorological parameters. 

• Specific 1: An effective model can be developed for estimating fine particulate air 

pollution from satellite-based aerosol optical depth and meteorological parameters using a 

small amount of labeled data and lots of unlabeled data in Ouagadougou by the 

incorporation of a semi-supervised algorithm 

• Specific 2: Fine particulate air pollution concentrations in Ouagadougou vary from season 

to season and are higher in the center and industrial areas. 

 Research Objectives 
The objectives verify the stated hypotheses.  

• Main:  To estimate fine particulate air pollution concentrations in Ouagadougou using 

satellite-based aerosol optical depth and meteorological parameters. 

• Specific 1: To develop an effective model for estimating fine particulate air pollution from 

satellite-based aerosol optical depth and meteorological parameters using a small amount 

of labeled data and lots of unlabeled data in Ouagadougou. 

• Specific 2: To analyze the Spatiotemporal variations of fine particulate air pollution 

concentrations in Ouagadougou. 
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CHAPTER 1: LITERATURE REVIEW 
 

Air pollution, especially PM2.5, has become a pressing environmental and public health concern 

globally. In the case of Ouagadougou, rapid urbanization, industrial activities, and traffic 

emissions contribute to high levels of PM2.5, which have adverse effects on both the environment 

and human health. The primary objective of this literature review is to critically examine previous 

studies that have employed satellite AOD data and meteorological variables to estimate PM2.5 

concentrations in general and in the context of Ouagadougou. The aim is to identify the strengths, 

limitations, and gaps in the existing knowledge and propose a methodology for accurate PM2.5 

estimation in the Ouagadougou. 

  1.1 Empirical Relationship Between AOD and PM2.5 

 Several previous studies used the relationship between AOD and PM2.5 to estimate PM2.5 

in areas without ground PM2.5 monitoring stations (Wang & Christopher, 2003; Engel-Cox et al., 

2004b; Gupta & Christopher, 2009;  Kumar et al., 2007; Koelemeijer et al., 2006). Engel-Cox et 

al. (2004b) studied the relationships between MODIS satellite AOD readings and ground-based 

PM2.5 measurements covering the period from 1 April to 30 September 2002 by calculating the 

correlation coefficient (r). The inverse of the amount of cloud cover was utilized to weight each 

observation's influence in each of their analyses to calculate the correlation. They discovered that 

correlations between ground-based particulate matter and MODIS aerosol optical depth were 

greater in the eastern and Midwest regions of the United States (east of 100° W). Also, they found 

that although the correlation was location-dependent, data in the western US were spotty and 

showed worse correlations. This fluctuation was caused by a mix of topography variability, 

regression artifacts, variations between the ground-based and column average datasets, and 

MODIS cloud mask and aerosol optical depth algorithms. They came to the conclusion that using 

satellite sensor data, such as that from MODIS, could significantly improve the monitoring of air 

quality at the regional and synoptic scales.   

 In Europe in 2003, Koelemeijer et al. (2006) compared the spatiotemporal variations of 

PM2.5 with those of AOD observed by the MODIS satellite instrument. They discovered that the 

primary aerosol-generating locations in Northern Italy, Southern Poland, and the 

Belgium/Netherlands/Ruhr region, as well as specific significant towns and industrialized valleys, 
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were all clearly visible in the MODIS readings. They also discovered that there were clear 

differences between AOD and PM's seasonal variation. They discovered that the AOD, as 

determined by MODIS, clearly decreased in the winter across the majority of Europe. In different 

ways throughout Europe, the seasonal fluctuation in PM2.5 was less pronounced than the AOD at 

various locations. As a result, there was little association between AOD and PM2.5 over a year. 

When the AOD was split by the boundary layer height and, to a lesser extent, when it was corrected 

for aerosol growth with relative humidity, the association between PM and AOD was improved. 

They discovered a 0.6 correlation on average between PM2.5 and the AOD. They came to the 

conclusion that satellite AOD observations could help with better tracking of PM2.5 dispersion 

across Europe. 

 Also, Wang & Christopher (2003) investigated the relationship between hourly fine 

particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama 

for 2002 and column AOD derived from the MODIS on the Terra/Aqua satellites. Their findings 

showed that the satellite-derived AOD and PM2.5 had a strong association (r = 0.7), indicating that 

the majority of the aerosols were in the well-mixed lower boundary layer during the satellite 

overpass times. Also, they discovered that there was a strong agreement (r > 0.9) between the 

monthly mean PM2.5 and MODIS AOD, with summer seeing the highest values due to increased 

photolysis. They found that due to higher traffic volume and constrained mixing depths in the 

morning (6:00–8:00 AM), PM2.5 exhibits a distinct diurnal character. Using simple empirical linear 

relationships derived between the MODIS AOD and daily PM2.5, they demonstrated that the 

MODIS AOD can be used quantitatively to estimate air quality categories as defined by the US 

EPA with an accuracy of more than 90 % in cloud-free conditions. 

 Furthermore, Hutchison (2003) used the relationship between satellite AOD and surface 

PM2.5 to examine which continental haze from the northeast migrated into Texas and necessitated 

the issuance of health advisories for 150 counties in Texas. Also, they illustrated the limitations of 

using only ground-based observations to monitor air quality across Texas. These drawbacks 

included gradients in pollution concentration that depend on the location of the point source, the 

meteorology governing its transport to Texas, and its diffusion across the region, as well as the 

size of State borders, which can only be monitored with a large number of ground-based sensors. 

Their results demonstrated the capability of MODIS data and products to identify and monitor the 
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movement of pollutants. They came to the conclusion that MODIS serves as the foundation for 

creating advanced data products that, when combined with ground-based observations, will 

produce an efficient and precise pollution monitoring system for the whole state of Texas. 

 Moreover, Kumar et al. (2007) also examined the relationship between the AOD, estimated 

from satellite data at 5 km spatial resolution, and the mass of PM2.5, monitored on the ground in 

Delhi Metropolitan. AOD and PM2.5 were significantly positively correlated, according to their 

findings. They examined the time-space dynamics of air pollution in Delhi by using the 

relationship to predict surface air quality for past years. 

 In addition, van Donkelaar et al. (2010b) estimated global ambient fine particulate matter 

concentrations from satellite-based AOD. They discovered that estimates of long-term average 

PM2.5 concentrations (1 January 2001 to 31 December 2006) at a resolution of roughly 10 km x 10 

km pointed to a geometric mean PM2.5 concentration of 20 µg/m3 for the entire world that was 

population-weighted. According to their research, 38 % and 50 % of central and eastern Asia, 

respectively, had PM2.5 levels over the World Health Organization's Interim Target-1 for Air 

Quality (35 µg/m3 yearly average). Throughout eastern China, annual mean PM2.5 concentrations 

were greater than 80 µg/m3. They found significant geographic agreement between the satellite-

derived estimate and ground-based in situ measurements (r = 0.77; slope = 1.07) as well as between 

the satellite-derived estimate and noncoincidental observations elsewhere (r = 0.83; slope = 0.86). 

The AOD retrieval, along with uncertainties in the aerosol vertical profile and sampling, was used 

to estimate the standard deviation of uncertainty in the satellite-derived PM2.5, which was 

calculated to be 25 %. The average global uncertainty, population-weighted, was 6.7 µg/m3. 

  Léon et al. (2021a) studied the correction between AOD and surface PM2.5 at Cotonou, 

Benin, and Abidjan, Côte d’Ivoire and found a weekly r = 0.75 between mean AOD and measured 

PM2.5. They used the relationship between the two variables to analyze the seasonal variability of 

Surface PM2.5 from 2003-2019. Xue et al. (2017) constructed a three-stage model with a spatial 

resolution of 0.1° to estimate the daily PM2.5 over China using data from satellite-derived AOD, 

and ground observations of PM2.5. The cross-validation (CV) approach was used to gradually 

assess the performance of the three-stage model. Their findings demonstrated that there was good 

agreement between the fused estimator of PM2.5 and the observational data (root- mean-square 

error (RMSE)= 23.0 µg/m3 and Coefficient of determination (R2)= 0.72).  
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The limitation of the above methods is that they did not take into account the meteorological 

influences on the AOD-PM2.5 relationship but depending on the location, a simple linear regression 

can be a useful technique in explaining the variations of PM2.5. 

1.2 Combining AOD and Meteorological Data for PM2.5 Estimation  
 The relationship between the satellite-based AOD and air pollution monitoring on the 

ground can be influenced by a number of meteorological factors such as temperature, relative 

humidity, Precipitation, wind speed, and wind direction (Paciorek & Liu, 2010; Song et al., 2014; 

Kumar, 2010; Hu et al., 2013; Zheng et al., 2017). Hence using the AOD-PM2.5 relationship alone 

for estimating PM2.5 may not be able to explain accurately the variations of ground PM2.5 

concentrations (Kumar, 2010; Wang et al., 2019). Hence, many researchers have proposed new 

statistical and machine learning techniques using PM2.5, AOD, and meteorological parameters to 

improve the estimation of surface PM2.5. 

   1.2.1 Statistical Methods 
 Tian & Chen (2010) developed a semi-empirical model using MODIS AOD, PM2.5, and 

meteorological parameters including specific humidity, air pressure, air temperature, and boundary 

layer height (BLH) to estimate, at a regional level, the hourly concentration of ground-level PM2.5 

concurrent with satellite overpass. Their model was able to explain 65 % of the variation in ground-

level PM2.5 concentrations Their estimated mass concentrations of PM2.5 were significantly 

correlated with the actual readings.  Their model had an RMSE of 6.1 µg/m³. It was discovered 

that adding ground-level temperature and relative humidity significantly increased the model's 

predictability. 

 Similarly, Gharibzadeh & Saadat Abadi (2022) used AOD data along with several effective 

meteorological variables such as temperature, relative humidity, wind speed, wind direction, and 

horizontal visibility to develop a multivariable linear regression model to estimate 

PM2.5 concentrations over Ahvaz, Iran. Their results of the multivariable linear regression model 

showed that the model could predict 60 % of PM2.5 changes in Ahvaz.  

  Furthermore, Wang et al. (2010) used a MODIS AOD, PM2.5, and humidity correcting 

method to develop a linear model for estimating surface PM2.5 in Beijing. The correlation between 

AOD and PM2.5 improved with the R2 increasing from 0.35 to 0.66 as a result of the humidity 

correction.  The correlation between the satellite-estimated and PM2.5 with the measurements was 
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R2 = 0.47, and the bias was 6.49 %, according to validation against the in-situ measurements in 

Beijing. The R2 between the estimated PM2.5 and the observations increased to 0.66 when averaged 

over Beijing’s urban region. Their findings suggested that the MODIS data may be used to monitor 

local air pollution by utilizing the relative humidity adjusting approach. 

 Benas et al. (2013) developed an MLR model for estimating PM2.5 over the broader urban 

area of Athens, Greece using In-situ PM2.5 measurements, MODIS AOD and related parameters; 

surface temperature and relative humidity. They evaluated each satellite-derived parameter’s 

contribution and the effectiveness of linear relationships on a stepwise validation. The model’s R2 

was roughly 0.7. They also calculated the seasonal mean PM2.5 distributions, which showed an 

intra-annual fluctuation with greater values in the summer along with variances in PM2.5 

concentrations related to air pollution at the city center and at industrial districts. 

 Ma et al. (2014) estimated ground-level PM2.5 from satellite-derived aerosol optical depth 

(AOD) and meteorological parameters in China using a spatial statistical model; geographic 

weighted regression (GWR) model. Their findings indicated that the performance of the model 

can be significantly enhanced by the meteorological data and land use information. Their model 

had an R2 of 0.64 and an RMSE of 32.98 µg/m3.  

 Also, Zhai et al. (2019) used the stepwise MLR model to relate PM2.5 variations across 

China to relative humidity, temperature, wind speed, precipitation, and meridional velocity at 850 

hPa (V850) as predictor variables. Their model explained about 50 % of the variance of surface 

PM2.5 concentrations, including 41-65 % for the five megacity clusters. Application to the PM2.5 

time series revealed that 6-year trends across China and in the megacity clusters were considerably 

influenced by meteorological variability. Removing meteorological variations as given by the 

MLR model also reduced the 235 uncertainty in the trend that could have been attributed to 

emission limits. 

 Additionally, in mainland China in 2019, He et al. (2021) clearly investigated the 

relationship between PM2.5 and AOD and its potential influence elements, such as climatic 

variables and terrain. They found that stronger spatial correlations were mostly seen in northern 

and eastern China and that the linear 25 slope in the northern inland regions was often higher than 

that in other locations. They also discovered that, temporally, the PM2.5-AOD association was most 
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pronounced in the winter and peaked in the midday and afternoon. They discovered that the PM2.5-

AOD correlation can be improved by taking both relative humidity and planetary boundary layer 

height (PBLH) into account. They observed large correlations between 400 and 600 meters, mainly 

in Sichuan, Shanxi, and Junggar basins. They came to the conclusion that in the majority of 

domains, such as the Tibetan Plateau and north-central China's Qinghai and Gansu, the Multi-

Angle Implementation of Atmospheric Correction (MAIAC) 1-km 30 AOD can better represent 

the ground-level fine particulate matter. 

  Kanabkaew (2013) Used The relationship between AOD and hourly PM2.5 over Chiangmai 

to develop an MLR model with ground-based meteorological observations. Their results revealed 

that the correlation between AOD and hourly PM2.5 was improved significantly when corrected 

with relative humidity and temperature data. The model had an R² of 0.77. They then applied the 

model to smog data over Chiangmai in March 2007. The model performed reasonably with R² of 

0.74. They concluded that the model applications would offer supplemental information to other 

regions with comparable circumstances but without air quality monitoring stations and reduce false 

alarms regarding the degree of air pollution associated with smog from extensive biomass burning. 

   1.2.2 Machine Learning Methods 
 In contrast to the traditional statistical methods, prediction technologies based on machine 

learning approaches have been shown to be the most effective instruments for studying air 

pollution (Joharestani et al., 2019; Kumar & Pande, 2022). Joharestani et al. (2019)  used AOD, 

satellite and meteorological data, ground-measured PM2.5, and geographical data to develop 

random forest, extreme gradient boosting, and deep learning machine learning approaches for 

PM2.5 prediction in Tehran’s urban area. The XGBoost model had the best performance obtained 

with R2 = 0.81, Mean absolute error (MAE) = 9.93 µg/m3, and RMSE = 13.58 µg/m3. Kumar & 

Pande (2022) developed five machine Learning models, k-nearest neighbors, Gaussian Naive 

Bayes, Support Vector Machine, Random Forest, and XGBoost to investigate six years of air 

pollution from 23 Indian cities. They compared the output of their models to the accepted 

measures. The Support Vector Machine model had the lowest accuracy, while the Gaussian Naive 

Bayes model showed the highest accuracy. Also, when the performances of their models were 

assessed and contrasted through established performance parameters. The XGBoost model 

outperformed the models and achieved the highest linearity between predicted and observed data. 
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Also, they observed that in the pandemic year of 2020, there was a considerable decrease in 

practically all pollutants. 

 Also, McFarlane et al. (2021) developed an MLR and a random forest model using data 

from the Met One Beta Attenuation Monitor-1020 (BAM-1020) at the United States (U.S.) 

Embassy in Kampala, Uganda, along with data from low-cost PM2.5 monitor, the PurpleAir, and 

meteorological parameters to predict corrected PM2.5 concentration. The MLR and the random 

forest model had R2 of 0.96 and 0.86 respectively and MAE of 3.4 µg/m3 and 5.8 µg/m3 

respectively.  Similarly, Lin et al. (2022) developed a Random Forest and eXtreme Gradient 

Boosting (RF-XGBoost) for estimating ground-level PM2.5 in Guanzhong Urban 

Agglomeration using the MODIS AOD product, high density meteorological and topographic 

conditions, land use, population density, and air pollutions. The RF-XGBoost model had a good 

performance with an R2 of 0.93 and an RMSE of 12.49 µg/m3. The Guanzhong Urban 

Agglomeration had the worst pollution in the winters of 2018 and 2019, according to the RF-

XGBoost model's output, as a result of the burning of coal for heating and bad climatic conditions. 

In the winter of 2019, they also observed that the air pollution situation remained dire, with more 

than 65 % of the study region meeting the mean PM2.5 levels higher than 35 µg/m3 and the 

maximum reaching 95.57 µg/m3.  

 Similarly, Gupta et al. (2021) developed a random forest model for estimating PM2.5 in 

Thailand using NASA's Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA2) reanalysis data of aerosols and meteorology. For the validation data sets, 

the model had an R2 between observed and estimated PM2.5 that varied between 0.88 and 0.92 and 

an RMSE that ranged from 8.5 µg/m3 to 10.5 µg/m3 for the validation data spanning 10-folds.  

They also noted that the model underpredicted PM2.5 levels at the hourly scale under extremely 

clean conditions (PM2.5 <10 µg/m3) and overpredicted PM2.5 levels during excessive loading (PM2.5 

> 80 µg/m3). The authors also observed that the daily mean PM2.5 (24-hour) values closely mirrored 

day-to-day fluctuation, with high values observed during the winter months (November-February) 

and lower values observed during other seasons. They concluded that the trained model could 

reprocess the regional MERRA2 time series, and the bias-corrected data may be applied to other 

tasks like long-term trend analysis and health exposure research. 
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 Using PM2.5 data collected from 29 stations across Malaysia and MODIS AOD and weather 

data, Kamarul Zaman et al. (2017) developed MLR and artificial neural networks (ANN) models 

for estimating PM2.5. In comparison to the MLR technique, which had R2 = 0.66 and RMSE = 

12.39 µg/m3, their findings showed that the ANN using MODIS AOD550 provides superior 

accuracy with R2 = 0.71 and RMSE = 11.61 µg/m3. Also, The MODIS AOD550 was the key 

parameter for PM2.5 according to their stepwise regression analysis done on the MLR approach. 

The RMSE was 13.61 µg/m3 and R2 was 0.59. They also discovered that the addition of 

meteorological parameters improved their model performance. Chen et al. (2018) used daily 

ground-level PM2.5 measurements obtained from 1,479 stations across China from 2014-2016 with 

data on AOD and meteorological data to develop random forests model for estimating daily PM2.5 

concentrations. The daily random forest model has a substantially greater RMSE of 28.1 µg/m3, 

and R2 = 83 %, explaining the majority of the spatial variability in daily PM2.5. They found that 

the model explained up to 86 % of the variation in average PM2.5 at the monthly and annual time 

scales. They came to the conclusion that the machine learning method had better prediction 

capacity than earlier research when using the modeling framework and the most recent ground-

level PM2.5 measurements. 

 Additionally, Using ground-level data collected from 19 stations across China between 

2017 and 2019 along with air temperature, specific humidity, sea level pressure, and wind speed, 

Fu et al. (2022) investigated the relationships between surface PM2.5 and AOD and developed a 

random forest model for predicting PM2.5. At 14 of the 19 sites, they discovered that specific 

humidity predominated the associations with normalized PM2.5-AOD differences. They also 

observed that a low r of 0.49 was obtained between the predicted and observed PM2.5 

concentrations when only AOD was used as input in the random forest model. When they added 

specific humidity into their model, the r increased to 0.74, which was close to the r of 0.81 with 

three additional weather parameters. Their research demonstrated a significant decoupling between 

PM2.5 and AOD and recommended considering humidity as a crucial factor in China for retrieving 

long-term PM2.5 using AOD data.  

 Zhang et al. (2021) combined satellite AOD, meteorology, land use, and socioeconomic 

data, to develop a random forest model for estimating daily PM2.5 concentrations at 1 km2 

resolution in and around Gauteng Province, South Africa. The daily readings from their model had 
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an overall cross-validation R2 of 0.80 and an RMSE of 9.40 µg/m3, indicating a satisfactory fit 

between model estimations and ground measurements. 

Recently, many scientists have begun incorporating semi-supervised algorithm into their 

developed machine learning models for extensive PM2.5 studies and enhancement of model’s 

performance. Zhao et al. (2023) proposed a co-trained semi-supervised learning model combining 

the K-nearest neighbors (KNN) algorithm and deep neural network (DNN) in order to maximize 

the utilization of unlabeled samples and enhance the model's performance for fine-grained air 

quality analysis in China. Their model outperformed other models with a coefficient of 

determination between the predicted and true values of 0.98. For the purpose of estimating PM2.5 

concentrations in China, Zhang et al. (2021) developed a semi-supervised model. Their strategy 

used bidirectional long short-term memory (BiLSTM) neural networks and empirical mode 

decomposition (EMD). Their findings showed that the semi-supervised model, which had an 

RMSE of 6.8 µg/m3 and an R2 of 0.97, was more accurate than the other conventional LSTM-

based model.   

Similarly, a semi-supervised learning algorithm for forecasting PM2.5 concentrations in 

Northeastern China was proposed by Jiang et al. (2022). Rich real-world data from 11 air quality 

monitoring stations in Shenyang and surrounding cities, meteorological data, and spatiotemporal 

information were all incorporated into the model. The experimental results demonstrated that the 

proposed model outperforms baseline methods in accuracy by 3 % to 18 % over a traditional 

multivariate linear regression, 1 % to 11 % over an MLR-ANN, and 21 % to 68 % over a support 

vector machine (SVM). 

1.3 Previous PM2.5 Studies in Ouagadougou 
 Etyemezian et al. (2005) assessed the in-situ measurements of suspended particulate matter 

concentrations during two campaigns to determine the airborne particle pollution levels in 

Ouagadougou. They used a portable instrument (AEROCET531S) to measure PM1, PM2.5, and 

PM10 at nine sites in 2018 and ten sites in 2019. They chose roadsides, in administrative facilities, 

secondary schools, and distant districts as their sites for the study. Their results showed that the 

PM1 concentrations had no significant variation between days, seasons or sampling sites. Their 

findings demonstrated that there was no appreciable difference in PM1 concentrations between 

days, seasons, or sampling locations. They noticed that the 24-hour PM2.5 concentrations 
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frequently exceeded the levels advised by the WHO. Additionally, they noticed that during the dry 

season, PM2.5 concentrations were higher than they were during the rainy season. 

 Also, Boman et al. (2009) determined the mass, black carbon (BC), elemental 

concentrations, and fluctuations in PM2.5 at two sites in Ouagadougou. They performed their 

elemental analysis using energy dispersive x-ray fluorescence (EDXRF) spectroscopy. In majority 

of the samples, they identified Chlorine (Cl), Potassium (K), Calcium (Ca), Titanium (Ti), 

Manganese (Mn), Iron (Fe), Copper (Cu), Zinc (Zn), Bromine (Br), Rubidium (Rb), Strontium 

(Sr), and Lead (Pb). The particle mass concentration ranged from 27 µg/m3 to 164 µg/m3, and the 

BC ranged from 1.3 µg/m3 to 8.2 µg/m3. Additionally, they discovered that leaded gasoline had 

no impact on the particle concentrations. By comparing their findings to the elements in a soil 

sample, they were able to identify soil dust as a key component of the particles. 

 Furthermore, Lindén (2011) investigated the characteristics of the connections between 

Ouagadougou's metropolitan climate and air pollution. The author focused on the impacts of 

various land cover types while examining spatial differences in daily temperature and humidity 

trends during the early dry season. Additionally, the author looked at how atmospheric stability 

affected the patterns of intra-urban air temperature, the urban wind field, and the spatial variations 

of air pollution levels. The author assessed weather and air quality characteristics at set locations 

and while driving through regions with varying land use, activity, traffic density, and road surface. 

According to the author, the strongest intra-urban nocturnal cool islands in vegetated regions were 

responsible for Ouagadougou's thermal patterns. These islands were brought about by the 

vegetation's evaporative cooling throughout the nighttime hours. The author also observed that 

Ouagadougou's air pollution situation was marked by significant spatial variations, high pollution 

levels overall, and extreme levels of coarse particles, frequently exceeding WHO air quality 

guidelines in all areas. Important sources included transported dust, traffic, biomass burning, and 

re-suspension of road dust.  

 Moreover, Nana et al. (2012) quantified the concentrations of Nitrogen Dioxide (NO2), 

Sulfur Dioxide (SO2), BTEX (Benzene, Toluene, Ethylbenzene, and Xylene), and PM10 in 

Ouagadougou. Their findings showed that, aside from downtown, where levels were frequently 

above the standard, NO2 concentrations in the city continued to be below the WHO-set limit. In 

general, the city's average SO2 concentrations remained low. They also discovered that the city 
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had high quantities of BTEX. Additionally, they discovered that the levels of PM10 in the city 

frequently surpassed WHO guidelines. They noted that the daily PM10 concentrations in 

Ouagadougou exhibited two peaks, the first at roughly 7 a.m. and the second at about 7 p.m. They 

also studied the seasonal variations of PM2.5 and found that the concentrations of PM10 were higher 

in the dry season and lower in the wet season. According to them, the PM10 was primarily made 

up of desert dust and dust that was re-suspended due to vehicle movement on unpaved roads. 

 Additionally, Ouarma et al. (2020) analysed PM1, PM2.5 and PM10 concentrations by hour, 

day and location in dry and rainy season 2018 and rainy season 2019 in Ouagadougou using 

measurements from the analyzer AEROCET 531S. They chose academic sites, sites in outlying 

neighborhoods, industrial sites, roadside locations with heavy traffic on paved roads, and 

administrative sites for the analysis. They observed that all the sites have PM concentrations that 

exceeded both the WHO and the US EPA guidelines except the academic site which was close to 

the required standard. They also found that combustion activities and resuspension processes had 

a substantial impact on the roadside, administrative, peripheral district, or industrial, leading to 

comparatively higher concentrations of PM2.5 and PM10. Traffic exhaust emission, which is a 

substantial source of fine and ultra-fine particles, had an impact on the traffic proximity locations. 

They also observed the PM concentrations in the dry season were higher than in the rainy season. 

Overall, the literature review reveals that previous studies have successfully employed 

satellite AOD data and meteorological variables to estimate PM2.5 concentrations in different 

regions. It has been observed that less attention is given to using statistical and machine learning 

techniques for estimating PM2.5 in Ouagadougou. Also, not much attention is given to using 

satellite AOD and weather parameters for PM2.5 estimation in the city. The long-term 

spatiotemporal variability of PM2.5 in the city has not been explored. The main objective of this 

work is to use satellite AOD and meteorological parameters by applying statistical and machine 

learning techniques to develop an effective model for estimating PM2.5 in the city of Ouagadougou. 
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CHAPTER 2: MATERIALS AND METHOD 
 

The methodology section of this study outlines the approach used to estimate PM2.5 concentrations 

in Ouagadougou. The estimation was based on the integration of satellite AOD with 

meteorological parameters. Two types of linear regression models (simple and multiple) and three 

nonlinear regression models (decision tree, random forest, and XGBoost) were developed based 

on the small amount of labeled data available in Ouagadougou to establish the relationship between 

the selected parameters and PM2.5 levels. The XGBoost model based on its outstanding 

performance was upgraded by incorporating a semi-supervised algorithm to use the lots of 

unlabeled data in Ouagadougou. The meteorological parameters included temperature, wind speed, 

wind direction, relative humidity, and precipitation. These parameters were chosen based on their 

known influence on PM2.5 concentrations, as documented in previous research. 

2.1 Study Area 
 Burkina Faso is currently showing fast progress in human development, climbing from the 

2nd lowest human development index in the world to the 9th position between 1970 and 2021 

(UNDP, 2021). One effect of this development is the extremely rapid growth of urban areas. The 

capital, Ouagadougou (12°22 N, 1°31 W, 300 m above sea level), has grown from 800 000 

inhabitants in the year 2000 to approximately 2.8 million in 2022 (UN, 2022). As a result of this 

urbanization, the urban area is expanding rapidly, with the proportionally fastest growth in the 

form of informal spontaneous settlements on the outskirts of the city. Informal spontaneous 

settlements in Ouagadougou have grown approximately 60 % since 2004, while the planned 

residential areas have grown approximately 30 % at the same time (Lindén et al., 2012). The 

growth in total length of paved roads has increased over the years, with the paving mainly taking 

place in high-income neighborhoods while the majority of the residential areas remain completely 

unpaved (Lindén et al., 2012). 

 Ouagadougou is considered one of the most polluted cities in Africa with its 24-hour PM2.5 

concentrations exceeding two to three times the WHO recommended (Ouarma et al., 2020). The 

city’s particulate matter is primarily made up of desert dust, uncontrolled industry, extensive 

biomass burning, heavy road traffic, and dust particles that have been re-suspended due to vehicle 

movement on unpaved roads (Boman et al., 2009; Ouarma et al., 2020; Nana et al., 2012). 
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  Ouagadougou is situated in the Sahel region's hot, semi-arid steppe climate. The weather 

is divided into two distinct seasons: a dry season from November to April, with an average of less 

than 100 mm of precipitation, and a wet season from May to October, with an average of 700 mm 

of precipitation (Agence Nationale de la Météorologie, ANAM 2007; Ouarma et al., 2020). The 

harmattan, which originates from the Sahara in the north, dominates the winds throughout the dry 

months (ANAM, 2007). The average yearly temperature is 29 °C. From March 8 to May 16, the 

hot season, with an average daily high temperature exceeding 38 °C, lasts for 2.3 months. In 

Ouagadougou, April is the hottest month of the year, with an average high of 39 °C and a low of 

28 °C. From July 9 to September 18, the cool season, which has an average daily high temperature 

below 32.2 °C, lasts for 2.3 months. With an average low of 18 °C and a high of 33 °C, January is 

the coldest month of the year in Ouagadougou. Extreme seasonal variations in perceived humidity 

can be found in Ouagadougou. The 6.9-month period from April 9 to November 5 known as the 

"muggier season" is when the humidity is at its highest and is at least 25 % of the time 

uncomfortable. During the evenings and at night, wind speeds are often quite low, and atmospheric 

stability is high, which indicates that there is little ventilation of the urban air (Lindén, 2011).  

 Over the course of the year, Ouagadougou's average hourly wind speed shows significant 

seasonal variation. From November 26 to June 28 there are 7.1 months that are windier than others, 

with average wind speeds exceeding 2.86 m/s. With an average hourly wind speed of 3.76 m/s, 

January is the windiest month in Ouagadougou throughout the year. June 28 to November 26 is 

when things are most tranquil. In Ouagadougou, September is the calmest month of the year, with 

an average hourly wind speed of 1.97 m/s (ANAM, 2007).  

 The city is more polluted in the dry season than in the rainy season with PM2.5 

concentrations varying from area to area (Nana et al., 2012; Ouarma et al., 2020). PM2.5 

concentrations in the industrial and administrative areas of the city are highly influenced by 

combustion (Ouarma et al., 2020). Kossodo and Gounghin are the major industrial areas of the city 

and are home to several processing plants and factories (Gouba et al., 2021). In terms of road 

transportation in the city, the breakdown of the vehicle distribution is as follows; Motorized two-

wheeled vehicles make up 74 % of the fleet, followed by private cars (18 %), buses (7 %), and 

heavy trucks (1 %) (Somda, 2018).  
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 Figure 1: Location of Burkina Faso and Ouagadougou in Africa 

 

Figure 2: The sixteen (16) locations in Ouagadougou where the satellite data were extracted 
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2.2 Data Collection  

   2.2.1 PM2.5 
 PM2.5 concentrations are usually monitored using aerosol samplers or PM2.5 monitors. 

These devices operate identically, drawing air inside before calculating the amount of PM2.5 

present on a filter. The values are expressed as micrograms (μg/m3) per cubic meter of air. The 

PM2.5 in this work was collected from the U.S. Embassy air quality station instrument (BAM-1020) 

in Ouagadougou. The BAM-1020 Instrument measures and reports PM2.5 levels with high accuracy 

on an hourly basis. The Hourly PM2.5 data at the station was available for the period January 2022 

to December 2022. Therefore, data for this period was obtained.  

 The BAM-1020 Instrument uses the principle of beta ray attenuation to measure the mass 

concentration of PM2.5 in ambient air. The beta-attenuation approach is one of the most popular 

real-time techniques for measuring ambient particulate matter since it provides continuous 

measurement while needing little operator attention (Shukla & Aggarwal, 2022).  A 14C element 

(<60 μCi) in the BAM-1020 emits a continuous stream of beta particles (high-energy electrons) 

directed at the filter tape. The ambient particulate matter collected on the filter tape weakens the 

beta rays, and the mass loading on the filter tape has an inverse relationship with the signal loss 

seen by the BAM-1020 scintillation counter before and after collection. The BAM-1020 calculates 

particle concentrations in ambient air using mass data and flow observations. The BAM-1020 

calculates and reports these concentrations as hourly averages in units of ug/m3 or mg/m3.  

   2.2.2 MODIS AOD 
AOD refers to the measurement of aerosols dispersed throughout an air column from the 

Earth's surface to the top of the atmosphere. AOD informs us of the amount of direct sunlight that 

these aerosol particles keep from reaching the Earth. A value of 0.01 indicates an exceptionally 

clean environment, whereas a value of 0.4 indicates foggy air conditions. When there is severe 

pollution, an AOD value greater than 1 indicates a high concentration of aerosols in the 

atmosphere. AOD levels between 1 and 3 are high in some natural events like wildfires and 

sandstorms. The greatest AOD that MODIS sensors may report is 4 (Li et al., 2021).  During the 

"harmattan" season, when biomass/urban pollution aerosol combines with coarse mode dust, fine 

mode aerosols predominate the daily aerosol optical influence (Ogunjobi et al., 2008). 
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 In this work, the AOD was extracted from the MODIS Terra and Aqua MAIAC Daily 

Level 2 Aerosol Product at spatial resolutions of 1 km ⨉ 1 km for Ouagadougou for the period 

2000-2022 using Google Earth Engine (GEE) and Python Programming. The MODIS sensors 

aboard National Aeronautics and Space Administration (NASA) Terra satellite track the AOD at 

daily frequency globally, and atmospheric retrievals at 36 spectral bands from the visible (VIS) to 

near-infrared (NIR) ranging from (0.41-15.0 μm) with a spatial resolution ranging between 0.25 

km and 1 km by using two distinct algorithms over land and ocean (Levy et al., 2010). To extract 

the AOD in GEE, the vector shapefile for Ouagadougou (the Region of Interest (RoI)) and the 

raster images for AOD were imported. The coordinates of the sixteen (16) different locations in 

Ouagadougou were extracted from Ouagadougou’s vector shapefile into a new shapefile in order 

to have daily AOD at different areas in the city. The sixteen (16) areas in Ouagadougou were 

chosen based on the geographical distribution of the city. The new shapefile was then imported 

into GEE and used to download the daily AOD data.  The daily AOD values were obtained from 

different images of the collection at 550 nm (AOD550) which were tagged by the date on which the 

location was observed by the MODIS satellite.  

A function was defined to reduce the pixel values contained within the RoI to a single 

statistic by averaging them. This function was then mapped over all the images in the collection to 

derive the average AOD for the region for the selected duration. The resulting time series was then 

exported as comma separated values (CSV) file to Google Drive. The AOD values are reported on 

a scale of 0.001. Therefore, the CSV file was then imported into a Google Colab notebook, and a 

function was defined to divide all the values by 1000 to rescale the values to a scale of 1. Since 

several observations can be made on the same day by the MODIS satellite, the values were 

averaged to get a single number for each day. 

   2.2.3 Ground-based Meteorological Parameters 
 The Ground-based meteorological Parameters used in this work were obtained from 

ANAM, Burkina Faso.  ANAM is the appropriate national authority for meteorology and climate 

issues in Burkina Faso.  It is also the recognized national service provider for meteorological and 

climatic data. Daily weather parameters including temperature, relative humidity, Precipitation, 

wind speed, and wind direction were collected for the period 2000-2022, from the ANAM weather 

station at Ouagadougou International Airport. 
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   2.2.4 Satellite Weather Parameters 
 Since the ground-based weather observations from the ANAM station at Ouagadougou 

International Airport alone might not be a good representation of all the different areas in 

Ouagadougou, Satellite weather observations including temperature, relative humidity, 

Precipitation, wind speed, wind direction were complimented. The satellite weather observations 

were extracted for the 16 areas in the city where the AOD was extracted, which included areas 

where the ANAM station did not cover and the area where the station covered (Ouagadougou 

International Airport).  

   2.2.4.1 Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS) Satellite Precipitation 

 CHIRPS is a quasi-global rainfall dataset spanning more than 30 years. To construct 

gridded rainfall time series for trend analysis and seasonal drought monitoring, CHIRPS combines 

in-situ station data with 0.05° resolution satellite imagery (de Sousa et al., 2020).  The data set 

spans from 1981 to the near present.  Two main data sets are present. The first is almost universal 

and spans the globe from 50° N to 50° S. The second includes regions of the Middle East and 

Africa. It encompasses the region between 20° W and 55° E, and between 40° N and 40° S. Data 

on a 0.05° grid at monthly, pentad, and daily times steps are included in the worldwide data set.  

 Furthermore, data at a 0.10° grid and a 6-hour time step are included in the Africa data set. 

The anticipated correlation between the precipitation for a given pixel and that from the 

neighboring stations is used in the technique for integrating CHIRPS with station measurements. 

The CHIRP fields are used to estimate these correlations. It also uses a second correlation value, 

which is meant to be an estimation of the correlation between the CHIRPS values and the "actual" 

precipitation at each pixel. This correlation, which is calculated from correlations between 

CHIRPS pixel values and gridded station observations, is given a value of 0.5. The next step is to 

calculate bias ratios using the closest five stations. A weighted average is then used to integrate 

these ratios into a single adjustment factor, with the weights being the squares of the correlation 

coefficients. To construct adjusted-CHIRP, these correction factors are multiplied by the CHIRP 

data. The original (unadjusted) CHIRP and the adjusted CHIRP are mixed in the final phase. The 

ratio of CHIRP and adjusted-CHIRP to be combined is calculated using the square of the 

correlation between CHIRP and "actual" rainfall as well as the projected correlation of the closest 

station. This last stage results in the CHIRPS product (Funk et al., 2015). 
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 The pentad (5-day) and monthly time scales are used to merge station data with CHIRP, 

and the pentads are afterward rescaled so that the total number of pentads in a month equals the 

monthly values. The monthly fields and pentads are combined to create a daily version. Daily cold 

cloud duration (CCD) percentages are used by the daily CHIRPS to distinguish between rain and 

no-rain events, and the related pentad rainfall is subsequently distributed across the daily rain 

events proportionally to CCD.  

 In this work, daily precipitation was extracted from CHIRPS in Google Earth Engine using 

JavaScript code. The Ouagadougou vector shapefile and the shapefile containing the coordinates 

of the 16 areas in the city were used to extract the data in order to have daily precipitation data for 

these 16 areas. During the extraction, the CHIRPS 5 km x 5 km spatial resolution was resampled 

to 1 km x 1 km spatial resolution using the resampling nearest neighbor interpolation method, so 

it has the same spatial resolution as the MODIS AOD. The data was extracted for the period 2000-

2022. 

   2.2.4.2 MODIS Land Surface Temperature 

 The generalized split-window approach and the day/night algorithm are used to recover the 

Land Surface Temperature (LST) and Emissivity daily data at 1 km pixels and 6 km grids, 

respectively. The split-window approach divides the lower boundary air surface temperature, 

atmospheric column water vapor, and band 31 and band 32 emissivities into tractable sub-ranges 

for optimal retrieval. The surface temperature, the surface's emissivity and reflectivity, 

atmospheric emission, the absorption and scattering of thermal radiation from the surface, as well 

as the sun's radiation during the day, all affect the thermal infrared signature that satellite sensors 

detect. LST is retrieved from MODIS thermal channel data for the entirety of the Earth's land 

surface, encompassing evergreen and deciduous forests and shrubs, crop and grasslands, inland 

waterbodies, snow and ice, barren lands with exposed soil, sands and rocks, and urban areas (Wan, 

2013).  

 The day/night algorithm uses pairs of day and night MODIS measurements in seven 

thermal infrared (TIR) bands to extract daytime and nighttime LSTs and surface emissivities. 

LSTs, quality evaluations, observation times, view angles, and emissivities make up the product. 

The MOD11 L2 swath product yields the temperature value. Some pixels may contain several 

observations where the clear-sky requirements are satisfied above 30 degrees latitude. The pixel 
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value is the average of all qualifying observations when this happens. The MODIS bands 31 and 

32 and six observation layers are also included, together with the daytime and nighttime surface 

temperature bands and associated quality indicator layers. The MODIS LST product based on 

thermal infrared data will only be accessible in clear sky conditions, it should be noted. 

  In this work, the temperature was extracted from MODIS Daytime Land Surface 

Temperature (LST_Night_1km) and the Nighttime Land Surface Temperature (LST_Day_1km) 

bands in Google Earth Engine for the period 2000-2022. The Ouagadougou vector shapefile and 

the vector shapefile containing the coordinates of the 16 areas in the city were used to extract the 

data according to my region of interest.  A function was created to convert the temperature from 

Kelvin (K) to degree Celsius (°C) by converting the image to float and multiplying by a scale of 

0.02 and then subtracting 273.15 from each value. To get the average temperature per day, the 

mean of the LST_Night_1km band and LST_Day_1km band was calculated using the expression; 

     𝑇 =
𝑇𝑑 + 𝑇𝑛

2
                                                                                                              (1) 

Where T is the average temperature per day in °C 

Td is the LST_Day_1km in °C 

 Tn is the LST_Night_1km in °C 

   2.2.4.3 ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis 

 ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts 

(ECMWF) atmospheric reanalysis of the entire world's climate. A global full and consistent dataset 

is produced through reanalysis, which mixes model data with observations from all across the 

world. ERA5 supersedes ERA-Interim, which it succeeded. Seven (7) ERA5 climate reanalysis 

parameters are gathered in ERA5 DAILY: 2 m air temperature, 2 m dewpoint temperature, total 

precipitation, mean sea level pressure, surface pressure, 10m u-component of wind, and 10m v-

component of wind. These values are provided for each day. Also, using the hourly 2 m air 

temperature data, the daily minimum and maximum air temperatures have been determined. 

Figures for daily sums of precipitation are provided. Daily averages are supplied for all other 

parameters.  
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 ERA5-Land is a reanalysis dataset that offers an improved resolution compared to ERA5 

and a consistent view of the evolution of land characteristics over multiple decades. Replaying the 

land portion of the ECMWF ERA5 climate reanalysis led to the creation of ERA5-Land. 

Reanalysis utilizes the rules of physics to merge model data with observations from all across the 

world into a globally complete and consistent dataset. Reanalysis generates data that covers a 

number of decades in the past and gives a precise account of the historical climate. All 50 variables 

that are included in the climate data store are included in this dataset (Muñoz-Sabater et al., 2021). 

The ERA5-Land Daily Aggregated dataset is at a spatial resolution of 9 km x 9 km. The asset is 

a daily aggregation of hourly assets from the ECMWF ERA5 Land model that includes both flow 

bands and non-flow bands. The first hour of the following day's data, which contains the 

aggregated sum of the previous day, is collected to produce flow bands, while the entire day's 

hourly data is averaged to create non-flow bands. This approach differs from the daily data 

generated by Copernicus Climate Data Repository, where flow bands are also averaged, and the 

flow bands are identified with the "_sum" identifier. Daily ERA5-Land aggregated data from July 

1963 to three months from real-time are accessible.  

 In this work, the relative humidity, wind speed, and wind direction were extracted from the 

daily ERA5-Land aggregated data in GEE for the period 2000-2022. The 9 km x 9 km spatial 

resolution of the daily ERA5-Land was resampled to 1km x 1km spatial resolution using the 

resampling nearest neighbor interpolation method to allow the data to have the same spatial 

resolution as the resampled CHIRPS precipitation, the MODIS AOD, and the land surface 

temperature. The Ouagadougou vector shapefile containing the coordinates of the 16 areas in the 

city was used to extract the data to the study region. Since relative humidity is not a direct product 

from satellite observations, it was calculated from the 2 m air temperature and 2 m dewpoint 

temperature (Lawrence, 2005). The 2 m air temperature is the temperature to which the air, at 2 

meters above the surface of the Earth, would have to be cooled for saturation to take place. it serves 

as an indicator of air humidity. The 2 m dew point temperature is determined by interpolating 

between the Earth's surface and the lowest model level while taking the atmospheric conditions 

into consideration. The following expression was used to compute the Relative humidity; 

 

𝑅𝐻 = 𝑒𝑥𝑝(
17.269 ×𝑇𝑑 

273.3 + 𝑇𝑑 
) −

17.269×𝑇

237.3 + 𝑇
) × 100                                                                       (2) 
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 where RH is the relative humidity in percentage 

Td is the dewpoint_temperature_2m in °C 

T is the temperature_2m in °C 

 The wind speed and wind direction were computed from the u and v components of wind 

(10 m u-component of wind and 10 m v-component of wind)  (Weber, 1991). The 10 m u-

component of wind is the eastward component of the 10 m wind. It is the horizontal speed in 

meters per second of air traveling in the direction of the east at a height of 10 meters above the 

Earth's surface.  The 10 m v-component of wind is the Northward component of the 10 m wind. It 

is the air's horizontal speed, measured in meters per second, at a height of ten meters above the 

Earth's surface as it moves in the direction of the north. The Pythagorean Theorem expression 

below was used to compute the wind speed 

𝑊𝑆 = √(𝑢2 + 𝑣2)                                                                                                                          (3) 

where WS is the wind speed in m/s  

u is the u-component of wind at 10 m 

v is the v-component of wind at 10 m                              

The wind direction was also computed using the following trigonometric expression; 

𝑊𝐷 = 𝑚𝑜𝑑(180 + (
180

3.14
) × 𝑎𝑡𝑎𝑛2(𝑣, 𝑢), 360)                                                                        (4) 

where WD is the wind direction in degrees 

u is the u-component of wind at 10 m 

v is the v-component of wind at 10 m 

Table 1: Summary of the satellite weather parameters downloaded 

Satellite Parameter Spatial resolution  Temporal resolution Source 

Precipitation Resampled at 1 km Daily CHIRPS 

Temperature 1 km Daily MODIS 

Relative Humidity Resampled at 1 km Daily Era5-Land 

Wind Speed Resampled at 1 km Daily Era5-Land 
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Wind Direction Resampled at 1 km Daily Era5-Land 

 

2.3 Data Processing and Analysis 

   2.3.1 PM2.5 
 The hourly PM2.5 data was used to compute the average PM2.5 concentrations according to 

local time for the period it was collected. This analysis was done to determine which times (hours) 

of the day were the PM2.5 concentrations high and which times were the concentrations low at the 

air quality station location (U.S. embassy, Ouaga 2000). This helped to draw some conclusions 

about the possible internal sources of PM2.5 at the location and in the city. The 24-hour PM2.5 

concentrations were averaged to obtain daily PM2.5 concentrations which was then used for the 

models’ development.  

It should be noted that PM2.5 concentrations were analyzed following both the WHO and the US 

EPA air quality guidelines. 

   2.3.2 Observed and Satellite Weather Parameters 
 The relationship between the observed weather parameters (temperature, relative humidity, 

precipitation, wind speed, wind direction) and the satellite weather parameters at the Ouagadougou 

International Airport was determined using Pearson correlation. The Pearson correlation 

coefficient measures the linear correlation between two sets of data (Barnston, 1992). It is the ratio 

between the covariance of two variables and the product of their standard deviations; as a result, 

it is effectively a normalized measurement of the covariance, with the result always falling between 

1 and 1. Values that are close to +1 or -1 indicate a strong relationship (Schober & Schwarte, 

2018). 

It is given by the expression; 

𝑟 =
𝑁𝜀𝑥𝑦−(𝑁𝜀𝑥)(𝜀𝑦)

√[𝑁𝜀𝑥2−(𝜀𝑥)2][𝑁𝜀𝑦2−(𝜀𝑦)2]
                                                                                  (5)                                                                                     

Where: 

r = Pearson correlation coefficient 

N = the number of pairs of scores 
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𝜀xy = the sum of the products of paired scores 

𝜀x = the sum of x scores 

𝜀y = the sum of y scores 

𝜀x2 = the sum of squared x scores 

𝜀y2 = the sum of squared y scores 

The slope of the line denotes whether there is a positive or negative linear relationship between 

the variables. A Positive correlation exists between the variables if the line slopes upward. 

This implies that if the value of one variable increases, the value of the other variable will also 

increase. A negative correlation shows a slope that is downward. This indicates that an increase in 

one variable causes a decrease in another variable's value. 

 The satellite weather parameters showed strong correlations with the observed weather 

parameters but with few biases. Because of these strong correlations, simple linear regression 

models were developed to correct the satellite data and reduce the bias. The days where they were 

missing values for satellite parameters were removed along with their corresponding ground 

observed values from the dataset before the data was used for the model’s development. The 

observed parameters served as the dependent variables and the satellite parameters served as the 

independent variables. Each observed parameter was then fitted with its corresponding satellite 

parameter and the linear equation between them was obtained.  A simple linear regression 

model describes the relationship between two variables by fitting a line through them. The simple 

linear regression model helps to estimate how a change in the dependent variable explains a change 

in the independent variable (Altman & Krzywinski, 2015). The simple linear regression models 

were developed following the equation below; 

𝑆𝑎𝑡𝑐𝑜𝑟𝑟𝑖 =  𝛽𝑖 × 𝑆𝑎𝑡𝑖 + 𝛽0𝑖                                                                                                   (6)                                                                                         

Where: 

𝑆𝑎𝑡𝑐𝑜𝑟𝑟𝑖 is the corrected satellite weather parameter, Sati is the satellite weather parameter, and βi 

is the regression coefficient, β0i is the intercept. 

 The models were evaluated based on the R2 and the RMSE. The R2 is a statistical metric 

that depicts how much variation in a dependent variable results from an independent variable. It is 
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a measure of how well the regression line approximates the actual data, and hence, the goodness 

of fit of a model (Miles, 2014). The range of R2's value is between 0 and 1. If the value is 0, it 

indicates that the independent variable is not able to account for changes in the dependent variable. 

A value of 1 indicates, however, that the independent variable completely accounts for the 

variation in the dependent variable. So, if a model's R2 is 0.50, it means that its inputs can account 

for around half of the observed variation. The closer the R2 value to 1, the good the model. It is 

represented mathematically as follows;         

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝜀(𝑦𝑖−𝑦̂𝑖)2

𝜀(𝑦𝑖−𝑦̅)2
                                                                               (7) 

The sum squared regression (SSR) is the sum of the residuals squared and the total sum of squares 

(SST) is the sum of the data's deviations from the mean. 

 RMSE is the residuals’ standard deviation (prediction errors). The distance between the 

data points and the regression line is measured by residuals, and the spread of these residuals is 

measured by RMSE. In other words, it provides information on how tightly the data is clustered 

around the line of best fit. In simple terms, RMSE is the square root of the mean of the square of 

all of the errors (Barnston & G., 1992). 

 𝑅𝑀𝑆𝐸 =  ∑
(𝑦̂𝑖−𝑦𝑖)2

𝑛

𝑛
𝑖=0                                                                                            (8) 

𝑦̂𝑖 are predicted values 

𝑦𝑖 are observed values 

N is the number of observations 

Given the same climatic zone, these models were then applied to correct all the satellite data for 

the other fifteen (15) locations in Ouagadougou where ground observation data was not available.  

   2.3.3 Statistical Regression Analysis  

     2.3.3.1 Simple Linear Regression 

 A Simple Linear Regression was developed from the daily (24 h averaged) PM2.5 data from 

the air quality monitoring station at the U.S. embassy (Ouaga 2000) and the satellite AOD observed 

at the same location. This analysis was done in Python and in Excel using the data analysis tool. 
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Before the model development, Pearson correlation was done to determine the Pearson correlation 

coefficient between the PM2.5 and the AOD variable and determine their strength and direction. It 

was noted that there are sample gaps in both the satellite AOD and the ground PM2.5 data, so days, 

where both values were not available, were removed from the dataset along with their 

corresponding corrected satellite weather data before the model’s development and validation. 80 

% of the data was used for model development and 20 % was used for model testing. The model 

was developed based on the PM2.5-AOD linear equation proposed by Engel-Cox et al. (2004). 

  𝑃𝑀2.5 =  𝛽0 + 𝛽𝐴𝑂𝐷 × 𝐴𝑂𝐷                                                                                        (9)                       

where PM2.5 is the mass concentration (µg/m3), β0 is the intercept and βAOD is the regression 

coefficient of the AOD. 

The model was evaluated using the R2 and the RMSE statistical metrics. 

2.3.3.2 Multiple Linear Regression 

 MLR is used for Modeling the linear relationship between the explanatory (independent) 

variables and response (dependent) variables (Jobson, 1991). It assumes that there is a linear 

relationship between the dependent variables and the independent variables. A precise estimation 

of the degree of influence each independent variable will have on the outcome variable may be 

made using the data on the many variables once each independent factor's ability to predict the 

dependent variable has been established. The model constructs a linear relationship that best 

approximates each of the discrete data points as a straight line (Jobson,1991). It is represented as;    

   𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑖𝑛𝑥𝑖𝑛 + 𝜀                                          (10)                                                      

Where for i = n observations: 

𝑦𝑖 = dependent variable 

xi  = explanatory variables 

𝛽0 = y-intercept 

βn = slope coefficient for each explanatory variable 

𝜀 = model’s error term 
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 To understand the influence of weather parameters on PM2.5, the MLR model was 

developed. The AOD and the corrected weather parameters (temperature, relative humidity, 

precipitation, wind speed, and wind direction) at Ouaga 2000 were used as input to develop the 

MLR model.  80 % of the data was used to develop the model and 20 % was used to test the 

model’s performance. Before the model development, each parameter was correlated with the 

surface PM2.5 to determine their relationship. This was done using Pearson’s correlation technique 

Song et al. (2014) modified the simple linear equation (9) by introducing meteorological 

parameters to obtain a multivariable equation for estimating PM2.5 as follows; 

𝑃𝑀2.5 = (𝛼 + 𝜀1) + (𝛽1 + 𝜀2) × 𝐴𝑂𝐷 + (𝛽2 + 𝜀3) × 𝑇𝐸𝑀𝑃 + (𝛽3 + 𝜀4) × 𝑅𝐻 + (𝛽4 + 𝜀5) ×

𝑊𝑆                                                                                                                         (11) 

where TEMP is temperature (°C); RH is relative humidity (%); WS is wind velocity 

(m/s); α and β are fixed coefficients; and ε is a random error. In developing the MLR model in this 

work, equation (11) was further modified by adding precipitation and wind direction to form 

equation (12) since research has shown that these variables have an influence on surface PM2.5 

concentrations. 

𝑃𝑀2.5 = (𝛼 +  𝜀1) +  (𝛽1 +  𝜀2) × 𝐴𝑂𝐷 + (𝛽2 + 𝜀3) × 𝑇𝐸𝑀𝑃 + (𝛽3 +  𝜀4) × 𝑅𝐻 +  (𝛽4 +  𝜀5) ×

𝑊𝑆 + (𝛽5 +  𝜀6) × 𝑃𝑟𝑒𝑐𝑖𝑝 + (𝛽6 +  𝜀7) × 𝑊𝐷                                                                       (12) 

Where: 

 TEMP is the temperature (°C); RH is relative humidity (%); WS is wind speed (m/s), Precip is 

precipitation (mm); WD is wind direction (degrees); α and β are fixed coefficients; and ε is a 

random error. 

The Significance F of the model and the P values of the independent parameters were also 

determined to test if the model was a good model and the significance of each independent 

parameter respectively. The model was also evaluated using the R2 and the RMSE metrics. 

   2.3.4 Machine Learning Models Development and Validation 
 From the Pearson correlation coefficients in the statistical regression analysis, it was 

observed that some of the independent variables are not well linearly correlated with PM2.5, which 
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means that the relationship between some of these variables and PM2.5 is not directly linear. This 

might have affected the optimal performance of the developed MLR model. Multiple linear 

regression does not give its optimal performance if the independent variables are not strongly 

correlated with the dependent variables (Uyanık & Güler, 2013).  

 Hence, three supervised non-linear models (decision tree, random forest, and XGBoost) 

were developed at the same location (Ouaga 2000) where the simple linear regression and multiple 

linear regression models were developed. The decision tree model and the random forest model 

were developed using the DecisionTreeRegressor class and the RandomForestRegressor class 

respectively from the scikit-learn machine learning library in Python. The XGBoost model was 

developed using the XGBRegressor class from the XGBoost library in Python. To determine how 

only AOD can be a predictor of PM2.5 in the non-linear models, only AOD was first used as an 

input to estimate PM2.5. These models assume that the relationship between the AOD, the weather 

parameters, and the PM2.5 is non-linear. In all the models, randomly selected 80 % of the data was 

in the models’ development and 20 % for the models’ testing. 

 

Figure 3: AOD Parameter alone as model input 

To understand the influence of weather parameters on surface PM2.5 and the PM2.5-AOD 

relationship, the corrected weather parameters were then introduced into the models. In all the 

models, randomly selected 80 % of the data was in the models’ development and 20 % for the 

models’ testing. 
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Figure 4: AOD and weather Parameters as model input 

    2.3.4.1 Decision Tree 

  DT is a non-parametric supervised learning method that can be applied to classification 

and regression issues (Song & Lu, 2015). It is a tree-structured classifier, where internal nodes 

stand in for the dataset's features, branches for the decision rules, and each leaf node for the 

outcome. Two nodes—the Decision Node and the Leaf Node—make up a decision tree. In contrast 

to Leaf nodes, which represent the decisions' output and have no more branches, Decision nodes 

are used to make any decision and have several branches. A decision tree only poses a question 

and divides the tree into subtrees according to the response (Yes/No). it has both classification and 

Regression Tree algorithms. 

  In this work, the regression tree algorithm was used. A regression tree is essentially a 

decision tree used for regression, which predicts continuous-valued outputs rather than discrete 

outputs.  It can be useful where the relationship between the variables is found to be non-linear 

(Song & Lu, 2015). The model was first developed using only AOD as input. This was done to 

determine how AOD alone would explain the variations of PM2.5 in the DT model. After that, all 

the weather parameters were then introduced into the model to determine how all these parameters 

combined would explain the variations of PM2.5.  

The model was developed from the following hyperparameters; ccp_alpha = 0.01, max_depth = 5, 

max_features = 'sqrt', min_samples_split = 2, random_state = 42, splitter = 'best'. 
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These hyperparameters were set after using the grid search technique which indicated that these 

were the optimal hyperparameters for the model. Before a machine-learning algorithm is applied 

to a dataset, hyperparameters are the parameters that are specifically established to regulate the 

learning process. The grid search is the simplest approach for hyperparameter tuning. A discrete 

grid was created within the hyperparameter domain, then all possible combinations of these grid's 

values experimented. 

The model was evaluated using the R2 and the RMSE from a 5-fold cross-validation technique. 

The dataset was split into 5 folds and the training and the testing were done on each one. One fold 

was taken into consideration for testing during each run, with the remaining folds being used for 

training as iterations continued.  This was done to evaluate the model's ability when given new 

data. The feature importance of the model was computed to determine which feature is important 

in the model in explaining the variations of PM2.5 

   2.3.4.2 Random Forest 

 RF is a supervised ensemble learning technique for classification, regression, and other 

problems that work by building a large number of decision trees during the training phase 

(Breiman, 2001). For classification tasks, the outcome of the random forest is the class selected by 

most trees. For regression tasks, the mean prediction of the individual trees is returned. Random 

Forest’s popularity has grown due to how simple and adaptable it is and how well it can handle 

classification and regression issues. It typically performs very well for problems involving non-

linear relationships.  A random forest algorithm is made up of many decision trees. The random 

forest algorithm trains its "forest" through bagging or bootstrap aggregating. An ensemble meta-

algorithm called bagging increases the precision of machine learning algorithms (Breiman, 2001). 

 Based on the predictions of the decision trees, the random forest algorithm determines the 

result. It makes predictions by averaging or averaging out the results from different trees. The 

accuracy of the result grows as the number of trees increases. The steps used by the RF algorithm 

are as follows; 

A). Pick p data points at random from the training set 

 B). Create a decision tree based on these p data points 
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C). Build number N of trees and repeat the A and B steps 

D).  Predict the value of y for a new data point using each of the N tree trees, then give the new 

data point the average of all the anticipated y values.  

The model was developed using the Grid Search method to get the optimal hyperparameters. The 

following hyperparameters gave the model its best performance. max_depth =7, n_estimators = 

50, max_features = ‘sqrt’, ccp_alpha=0.01, min_samples_split = 4, min_samples_leaf=2. 

Five-fold cross-validation was performed to evaluate the model, its average was used to obtain the 

R2 and RMSE of the model. The feature importance of the model was calculated and ranked in 

descending order. 

   2.3.4.3 XGBoost 

 XGBoost is an ensemble learning method that uses more precise approximations to 

identify the optimum tree model. It is an enhanced distributed gradient boosting library created for 

effective and scalable machine learning model training (Chen & Guestrin, 2016). XGBoost is one 

of the effective algorithms in gradient descent that has a linear model algorithm and a tree learning 

algorithm. Hence, it can handle non-linear relationship problems (Aditya Sai Srinivas et al., 2019). 

Supervised machine learning, which uses data from various aspects of xi to predict a target variable 

yi, can be implemented using XGBoost. Because of its speed and precision in predicting outcomes, 

XGBoost is frequently used by authors to solve various regression and classification issues.  

 One of XGBoost's distinguishing features is its effective handling of missing values, 

which enables it to handle real-world data with missing values without necessitating a lot of pre-

processing. XGBoost is quite adaptable and enables fine-tuning of many model parameters to 

enhance performance (Chen & Guestrin, 2016). The model was developed from the following set 

of hyperparameters using grid search. 

base_score = 0.5, booster = gbtree, callbacks = None, colsample_bylevel = None, colsample_byn

ode = None, colsample_bytree = 0.5, early_stopping_rounds = None, enable_categorical = False, 

eval_metric = None, feature_types = None, gamma = 0.4, gpu_id = None, grow_policy = None, i

mportance_type = None, interaction_constraints = None, learning_rate =0.1, max_bin = None, m

ax_cat_threshold = None, max_cat_to_onehot = None, max_delta_step = None, max_depth = 7, 
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max_leaves = None, min_child_weight = 7, missing = nan, monotone_constraints = None, n_esti

mators = 100, n_jobs = None, num_parallel_tree = None, predictor = None, random_state = 42. 

The model was evaluated using a five-fold cross-validation, the R2 and the RMSE were then 

computed. The plot_importance function from the XGBoost library was then used to plot the 

feature importance of the model. 

   2.3.4.4 Semi-supervised XGBoost Model 

 Semi-supervised learning is a machine learning technique that uses a small portion of 

labeled data and lots of unlabeled data to train a predictive model. Semi-supervised learning uses 

a combination of supervised and unsupervised learning techniques to train a model (Zhu, 2005). It 

can be used for both classification and regression problems. It uses clustering techniques on the 

unlabeled data to better depict the underlying data distribution and more accurately generalize to 

new unseen samples.  

 Based on the training principle, semi-supervised learning can be divided into Inductive and 

Transductive. In the inductive training principle, the semi-supervised model is trained to keep the 

rules observed during the training process so it can generalize well to new unseen data whereas in 

the transductive training principle, the semi-supervised model is trained to solve the problem at 

hand and forget the rules observed during its training, hence does not generalize well to new unseen 

data and always require re-running of the algorithm. Semi-supervised learning often outperforms 

the traditional unsupervised learning since it takes advantage of the labeled data to facilitate its 

learning process (Zhang et al., 2021;  Chen et al., 2022). Semi-supervised learning has proven 

effective in areas with fewer labeled data or in areas where labeled data is expensive (Zhu, 2005).  

 

Figure 5: Semi-supervised learning in a Nutshell 
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 In this work, Since after cross-validation XGBoost outperforms DT, RF and the other 

statistical models in estimating PM2.5, the model is upgraded by incorporating a semi-supervised 

algorithm into it to develop a semi-supervised XGBoost model which allows the model to learn 

from both the small amount of labeled data available and the lots of unlabeled data in previous 

years and make predictions. When PM2.5, AOD, and meteorological parameters are all available, 

they are considered labeled data and when AOD and meteorological parameters are available 

without PM2.5, they are considered unlabeled data. Ouagadougou has a small amount of labeled 

data and lots of unlabeled data, hence the need for the semi-supervised XGBoost model. The model 

uses techniques of supervised learning on the labeled data and clustering techniques of 

unsupervised learning on the unlabeled data to learn the structures and patterns of the data, and 

make accurate predictions. The algorithm divides the unlabeled data into clusters and applies the 

clustering assumption; points in the same cluster are likely to have the same output. Guided by the 

labeled data it makes predictions. The model was trained using the inductive training principle so 

it can generalize well to new unseen data. 

 

Figure 6: Semi-supervised XGBoost 

80 % of the labeled data was combined with the unlabeled data and 20 % of the labeled data was 

on hold for model testing. The model was evaluated using the R2 and RMSE metrics on the 20 % 
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labeled data. A five fold cross-validation technique was used to assess the model's generalization 

performance. 

2.3.5 Estimation of PM2.5 in Areas without PM2.5 Data in Ouagadougou 
 The semi-supervised XGBoost model was applied to estimate PM2.5 in the remaining 

fifteen (15) areas of the city where PM2.5 data was not available since these areas are in the same 

climatic zone as where the model was trained. The estimation was done for the period in which 

the model was trained (2000-2022) to study the growth and distribution of PM2.5 for this period. 

 The estimated daily PM2.5 concentrations were analyzed to determine which months have 

days with high PM2.5 concentrations and which months have days with low concentrations at the 

location. The averaged monthly variations of the estimated PM2.5 were also analyzed to determine 

which months have the highest PM2.5 concentrations and which months have the lowest 

concentrations. The yearly averaged variations of the estimated PM2.5 were studied to determine 

which years had the highest PM2.5 concentrations and which years had the lowest. 

2.3.6 Spatial Distribution of PM2.5 
 The estimated PM2.5 was then plotted spatially using the quantum geographic information 

system (QGIS) software and the Inverse Distance Weighted (IDW) interpolation. This was done 

to study the distribution of PM2.5 in the city. IDW is a specific kind of deterministic approach for 

multivariate interpolation using a known scattered set of points (Liu et al., 2021). A weighted 

average of the values available at the known points is used to determine the values allocated to the 

unknown points. The representative traditional interpolation techniques for PM estimation are 

IDW and kriging (Li & Heap, 2011).   

 IDW is quick and simple to use, and it has been used in many research to evaluate the trend 

and distribution of PM (Liu et al., 2009). According to some studies, IDW is more appropriate for 

PM estimation than the Kriging-based approach (Li et al., 2016). The seasonal (dry season and 

rainy season) distribution of estimated PM2.5 was studied. The min, the mean, and the max of PM2.5 

distributions for the dry and rainy seasons of 2000-2005, 2006-2011, 2012-2017, and 2018-2022 

were studied to determine the most polluted areas in Ouagadougou over these intervals (long-

term). The reason for analyzing data over every 6 years is to give more information on the 

variability of PM2.5 at the different areas. Also, the mean distribution of the estimated PM2.5 for the 
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dry season and rainy season of each year was studied to determine polluted areas in the city over 

short-term. 

In summary, this methodology section outlined the approach used to estimate PM2.5 

concentrations in Ouagadougou, leveraging satellite AOD data and meteorological parameters. By 

incorporating temperature, wind speed, wind direction, relative humidity, precipitation, and AOD 

as predictors, we developed a comprehensive framework to enhance the accuracy of PM2.5 

estimation. Also, the spatial distribution PM2.5 in the city is studied using the IDW technique in 

QGIS. Moving forward, the subsequent sections of this work will present the results and analysis 

derived from our methodology, providing a deeper understanding of PM2.5 levels in Ouagadougou 

and their association with the identified predictors. 
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CHAPTER 3: RESULTS AND DISCUSSION 
 

The results and discussion section of this study presents the findings from methodology. This 

section aims to analyze and interpret the obtained results, providing insights into the relationship 

between the selected predictors and PM2.5 levels in the region. the results delve into the outcomes 

of the statistical models, the machine learning models, and the spatial distribution analyses 

conducted in the study. Moreover, the discussion provides a deeper analysis and interpretation of 

the results and draws meaningful conclusions from the results, synthesizing the key findings and 

their significance.  

3.1 Hourly profile of PM2.5 at Ouaga 2000 
 Figure 7 shows the hourly profile of PM2.5 at the Ouaga 2000. There are two peaks observe, 

one in the morning and one in the evening but with different magnitudes. The evening peak is 

higher with PM2.5 concentrations at about 105 µg/m3 whilst the morning peak is lower with PM2.5 

concentrations at about 70 µg/m3. The morning peak is observed between 5:00 am and 9:00 am 

and the evening peak is observed between 4:00 pm and 11:00 pm. The peak in the morning is due 

to morning vehicle traffic when people are going to work and the evening peak is due to evening 

vehicle traffic when people are returning home after work. This means that vehicle emissions have 

a great impact on the concentrations of PM2.5 in the area.  

 Additionally, the high concentrations of PM2.5 in the evening might be due to the dynamics 

of the boundary layer (BL), which produce high dilution rates during the day and low dilution rates 

after sunset (Lee et al., 2019). However, there is no visible peak between 12: 00 noon and 3:00 

pm, as it can be expected since people go out for lunch during this time. Nana et al. (2012); Ouarma 

et al. (2020) observed similar peaks at administrative sites in Ouagadougou. These peaks are also 

similar to peaks observed by McFarlane et al. (2021) in Kinshasa-Brazzaville. They observed 

peaks in the morning at 8: 00 am and in the evening at 8:00 pm. 
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Figure 7: Hourly profile of PM2.5 at the Ouaga 2000 

3.2 Observed PM2.5 and MODIS AOD at Ouaga 2000 
 Figure 8 shows the relationship the 24-hour average (daily) PM2.5 and MODIS AOD at 

Ouaga 2000. The daily surface PM2.5 shows a strong relationship with the daily MODIS AOD with 

a Pearson correlation coefficient of 0.72. This strong correlation is due to the fact that the city is 

mostly cloudless and most of the PM2.5 in the city comes from the Sahara desert. This correlation 

is similar to the correlation observed by Léon et al. (2021b). They observed of 0.75 between mean 

weekly AOD and surface PM2.5 in Cotonou, Benin and Abidjan, Côte d'Ivoire. This similarity in 

correlations is because the surface PM2.5 in the region is mostly from the sahara desert and also 

given the similarities in climatic conditions. 

 Malings, Westervelt et al. (2020) found similar correlations in Rwanda but however 

observed different correlations in Pittsburgh. Koelemeijer et al. (2006) found a correlation of 0.6 

between MODIS AOD and PM2.5 over Europe. Similarly, van Donkelaar et al. (2010b) found a 

correlation of 0.77 between surface PM2.5 and MODIS AOD over Eastern China. These 

correlations show the usefulness of the MODIS AOD in estimating surface PM2.5 concentrations. 
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Figure 8: PM2.5 and AOD 

3.3 Observed and Satellite weather parameters at Ouagadougou International 

Airport 
 Figure 9 shows the trend of the relationship between observed precipitation and CHIRPS 

satellite precipitation at Ouagadougou International Airport. Table1 shows the Pearson correlation 

coefficients (r) between observed and satellite weather parameters at the same location. The 

observed precipitation and the CHIRPS satellite precipitation are following the same trends and 

are strongly correlated with a Pearson correlation coefficient of 0.87. These findings are similar to 

the findings by Plessis & Kibii (2021), they had Pearson correlation coefficients of 0.77 between 

observed precipitation and CHIRPS precipitation over South Africa.  

 

Figure 9: Observed precipitation and CHIRPS precipitation 
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Figure 10 shows the trend of the relationship between observed temperature and MODIS 

satellite temperature at Ouagadougou International Airport. The observed temperature and the 

MODIS satellite temperature have similar trends and are strongly correlated with a Pearson 

correlation coefficient of 0.92. Shen & Leptoukh (2011) found similar correlations (r=0.93) 

between MODIS land surface temperature and observed temperature over central and eastern 

Eurasia. 

 

Figure 10: Observed Temperature and MODIS temperature 

Figure 11 shows the trend of the relationship between observed relative humidity, wind 

speed, wind direction and Era5-Land reanalysis relative humidity, wind speed, wind direction at 

Ouagadougou International Airport. The observed weather parameters and Era5-Land reanalysis 

parameters show similar trends and are strongly correlated with their Pearson correlation 

coefficients ranging from 0.89 to 0.96. These Pearson correlation coefficients are similar to what 

was found by Assamnew & Mengistu Tsidu (2023); Gleixner et al. (2020), they had Pearson 

correlation coefficients ranging from 0.90 to 0.96 between Era5 weather parameters and observed 

weather parameters over East Africa. 

The strong correlation between observed weather parameters and satellite weather 

parameters is due to the fact that Ouagadougou is mostly cloud-free throughout the year except in 

the rainy season. 
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Figure 11: Observed parameters and Era5-Land Parameters 

Table 2: Pearson correlation coefficients between observed and satellite weather parameters at 

Ouagadougou International Airport. 

Parameters r 

Observed precipitation and CHIRPS 

precipitation (resampled 1km resolution) 

0.87 

Observed relative humidity and Era5-Land 

relative humidity (resampled 1km resolution) 

0.96 

Observed temperature and MODIS Land 

surface temperature 

0.92 

Observed wind speed and Era5-Land wind 

speed (resampled 1km resolution) 

0.93 

Observed wind direction and Era5-Land wind 

direction (resampled 1km resolution) 

0.89 
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Based on the strong Pearson correlation coefficients, simple linear regression models are 

developed as shown in Figure 12 for correcting satellite data. The R2 of the models range from 

0.75 to 0.92 with RMSE also ranging from 0.3 to 22.2, indicating that the models are able to 

explains adequately the variations between observed weather parameters and satellite weather 

parameters.  These models are applied to correct the satellite weather data of the other fifteen (15) 

areas in the city without ground weather observations. The corrected satellite weather parameters 

are then used along MODIS AOD to develop the models for estimating PM2.5 in Ouagadougou. 

 

Figure 12: Simple linear models for correcting satellite data 

3.4 Observed PM2.5 and corrected satellite weather parameters at Ouaga 2000 
 Figure 13 shows the relationship between surface PM2.5 and the corrected CHIRPS 

precipitation. PM2.5 shows a weak negative correlation (r=-0.26) with CHIRPS precipitation. The 

negative correlation means that as precipitation increases, PM2.5 decreases and vice versa. This is 

consistent to what was explained by Tai et al. (2012). They found that wet deposition serves as the 

primary sink for atmospheric particulate matter, hence increases in precipitation will result in 

declines in particle concentrations. The weak correlation means that most of the variations of PM2.5 
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are not directly explained by precipitation. These findings are also consistent with the findings by 

Westervelt et al. (2016), they observed a correlation of -0.41 between precipitation and PM2.5 

concentrations in the upper midwest and parts of eastern United States. 

 

Figure 13: PM2.5 and Corrected CHIRPS Precipitation 

 Figure 14 shows the relationship between surface PM2.5 and corrected MODIS land surface 

temperature. The relationship between these two variables is weak (r=0.11).  Temperature is 

positively correlated with surface PM2.5, meaning an increases in temperature will lead to some 

increase in PM2.5 concentrations. This is consistent with the findings observed by Westervelt et al. 

(2016), they observed a correlation of 0.07 between temperature and PM2.5 concentrations over 

eastern and Midwest United States. Also, Tai et al. (2012) observed a correlation of 0.1 to 0.4 

between temperature and gaseous pollutants in some parts of United States. They further explained 

that heat worsens air pollution by causing reactions between atmospheric particles like nitrogen 

oxide and oxygen, which create ozone and break down primary particles into even smaller, more 

dangerous particles. However, the weak correlation observed in our findings indicate that most of 

the variations in the concentrations of PM2.5 are not directly explained by temperature. 
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Figure 14: PM2.5 and corrected MODIS LST 

 In Figure 15, the relationship between surface PM2.5 and corrected Era5-Land relative 

humidity, wind speed, and wind direction is shown. All these variables are negative correlated 

with surface PM2.5. Relative humidity has the strongest negative correlation (r=-0.55) followed by 

wind direction(r=-0.33) and wind speed(r=-0.04). The negative correlations implies that an 

increase in any of these variables will result in a decrease of PM2.5. These findings are similar to 

the find observed by Islam et al. (2023) in Bangladesh. They found a correlation of -0.16 between 

PM2.5 and relative humidity, -0.28 between PM2.5 and wind speed, and -0.18 between PM2.5 and 

wind direction. Sirithian & Thanatrakolsri (2022) also found a correlation of -0.72 between PM2.5 

and relative humidity, and -0.03 between PM2.5 and wind speed in northern Thailand. High 

Relative humidity leads to PM2.5 flocculation, followed by gravity settling similar to wet deposition 

by precipitation hence decreasing the concentrations of PM2.5. Ouarma et al. (2020) found that 

during their PM measurement periods in Ouagadougou, when relative humidity was high (70 % in 

August and 67 % in September), PM concentrations were low. Also, Lou et al. (2017) found that 

high humidity (70-90 %) had significant influence on reducing PM2.5 concentrations in Yangtze 

River Delta, China. Low wind speed leads to a stagnant atmosphere favoring PM2.5 accumulation. 

On the other hand, high wind speeds promote PM2.5 dissipation. It is important to note that high 

wind speed can also generate and transport dust.  
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 Similarly, the direction of the wind can determine the concentration of PM2.5. If the wind 

direction is away from an area with PM2.5 sources, the PM2.5 particles are transported away from 

that area resulting in lower PM2.5 concentrations in that area and hence negative correlation.  The 

weak correlations of the parameters with PM2.5 imply that most of the changes in concentrations 

of PM2.5 are not directly explained by the parameters. 

 

Figure 15: PM2.5 and corrected Era5-Land parameters 
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Table 3:  Summary of the Pearson correlation coefficients between PM2.5 and AOD and 

corrected satellite weather parameters at Ouaga 2000. 

Parameters r 

AOD-PM2.5 0.72 

Relative Humidity-PM2.5 -0.55 

Temperature-PM2.5 0.11 

Precipitation-PM2.5 -0.26 

Wind Speed-PM2.5 -0.04 

Wind Direction-PM2.5 -0.33 

 

3.5 Statistical Regression Models  
 Two models are developed; SLR model and MLR model. PM2.5 and AOD at the Ouaga 

2000 are used to developed the SLR model as shown in Figure 16, to determine how MODIS 

AOD can be a predictor of surface PM2.5. The simple linear regression model developed is: 

 𝑃𝑀2.5 = 75.61 × 𝐴𝑂𝐷 + 38.36                                                                                                    (13)                                                                                                                  

The model has an R2 of 0.52, indicating that MODIS AOD explains about half of the variations of 

surface PM2.5. The RMSE of the model is 38.3 µg/m3 and the significance F is 1.23 x 10-22 (less 

than α = 0.05).  These findings are similar to the findings by van Donkelaar et al. (2010b). They 

obtained R2 of 0.59 between MODIS AOD and PM2.5 over Eastern China. Wang & Christopher 

(2003)  obtained R2 of 0.49 at seven locations in Jefferson County, Alabama. Koelemeijer et al. 

(2006) also obtained R2 of 0.36 between AOD and PM2.5 at some locations in Europe. 

 To understand the influence of meteorological parameters on surface PM2.5, the corrected 

satellite weather parameters; relative humidity, temperature, precipitation, wind speed, and wind 

direction at the same location (Ouaga 2000) are introduced into the linear equation to produce the 

multiple linear regression model below  

𝑃𝑀2.5 = 174.11 + 69.27 × 𝐴𝑂𝐷 − 1.65 × 𝑇 − 1.00 × 𝑅𝐻 − 14.04 × 𝑊𝑆 − 1.54 × 𝑃𝑟𝑒𝑐𝑖𝑝 −

 0.08 × 𝑊𝐷                                                                                                                      (14) 

The MLR model has an R2 of 0.67 and an RMSE of 33.7 µg/m3 with a significance F of 8.85 x 10-

30 (less than α = 0.05) as shown in Figure 16. One explanation for this is that the inclusion of 
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meteorological parameters leads to better prediction of surface PM2.5, the MLR model explains 

0.67 of the variations of surface PM2.5 with smaller RMSE compared to the SLR model.  These 

findings are very consistent with the findings of Tian & Chen (2010). Their regression model was 

able to explain 0.65 of the variations of ground-PM2.5 after adding relative humidity and 

temperature. Also, Gharibzadeh & Saadat Abadi (2022) multiple linear regression model explained 

about 60 % (R2 of 0.6) of the changes in PM2.5 over Ahvaz, Iran. Similarly, Ma et al. (2014) 

multiple linear regression model predicted 0.64 the variations of surface PM2.5 in China with 

RMSE of 32.98 µg/m3.  

 Though the findings clearly show that the addition of meteorological parameters into the 

SLR model to produce the MLR model improves the model’s performance, this model assumes a 

linear relationship between the parameters and PM2.5. From the Pearson correlation performed on 

the parameters and the PM2.5, it is observed that most of the variations of PM2.5 are not directly 

explained by the parameters (less Pearson correlation coefficients, nonlinear relationships) and this 

resulted in the model explaining just 0.67 the variations of surface PM2.5.  

 

Figure 16: Statistical Regression Models 
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3.6 Machine Learning Models 

3.6.1 Only AOD parameter as input in models 
 Three nonlinear machine learning models (DT, RF, and XGBoost) models are developed 

at the same location (Ouaga 2000) where the SLR and MLR models are developed. The nonlinear 

models are developed first using only AOD as input parameter. This is done to determine how 

only MODIS AOD can be a predictor of PM2.5 in the nonlinear models. As shown in Figure 17, 

the DT, RF, and XGBoost model has R2 of 0.56, 0.58, and 0.54 respectively and RMSE of 39.5 

µg/m3, 42.1 µg/m3, and 48.9 µg/m3 respectively. The performance of these models with only AOD 

is better than the SLR model with only AOD.  The models explain more than half of the variations 

of surface PM2.5. However, their RMSE are high compared to SLR model. Fu et al. (2022) 

observed similar performance across China when only AOD was used in their random forest 

model, their model had R2 of 0.49. 

 

Figure 17: Only MODIS AOD as input parameter in nonlinear models 
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3.6.2 All parameters as input in models 
 To understand the influence of meteorological factors on surface PM2.5, the corrected 

satellite meteorological parameters; relative humidity, temperature, precipitation, wind speed, and 

wind direction are added into the models. As shown in Figure 18, when the meteorological 

parameters are introduced into the models, their performance increases significantly. The XGBoost 

model outperform all the models explaining 0.87 of the variations of surface PM2.5 with lower 

RMSE of 15.8 µg/m3, followed by the random forest model explaining 0.85 of the variations of 

surface PM2.5 with RMSE of 16.6 µg/m3 and then the decision tree model explaining 0.70 of the 

variations of surface PM2.5 RMSE of 34.0 µg/m3. These findings clearly show that the nonlinear 

models perform better than the linear models in the estimation of surface PM2.5. These findings 

are consistent with the findings by Joharestani et al. (2019), they found that the XGBoost 

outperformed all their models in estimating PM2.5 in Tehran’s urban area with R2 of 0.81 and 

RMSE of 13.58 µg/m3.  

  McFarlane et al. (2021) random forest model for correcting low-cost sensors PM2.5 data in 

Kampala, Uganda, had similar performance (R2 of 0.86). Also, Zhang et al. (2021) random forest 

model for estimating surface PM2.5 around Gauteng Province, South Africa gave similar 

performance (R2 of 0.80 and RMSE of 9.4 µg/m3) after the addition of meteorological data. 
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Figure 18: All parameters as input in models 

 Figure 19 shows the feature importance in the DT, RF, and XGBoost model. In all the 

models, MODIS AOD is the most important feature in PM2.5 estimation, followed by relative 

humidity and temperature. Precipitation is the less important parameter in the models’ estimation. 

This means that the impact of precipitation in explaining the variability of PM2.5 is less significant 

compared to AOD, relative humidity, temperature, wind speed, and wind direction. 

 

Figure 19: Nonlinear models feature importance 
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3.6.3 Semi-supervised XGBoost model 
 Figure 20 shows the performance of the semi-supervised XGBoost model. The model has 

an R2 of 0.97 and an RMSE of 8.3 µg/m3 after a five fold cross-validation, indicating that the 

model explains 0.97 of the variations of PM2.5 with lower RMSE. These findings are similar to the 

findings by Bougoudis et al. (2016), their semi-supervised ANN model explained about 0.9 of the 

variations of air pollutants in Athens, Greece. Similarly, the semi-supervised KNN model proposed 

by Zhao et al. (2023) in China had R2 of 0.97. Figure 20 also shows the estimation of PM2.5 by the 

model on the whole data (labeled and unlabeled) after testing. 

 

Figure 20: Semi-supervised XGBoost Model performance 

Table 4: Summary of the performance of all models 

Model Input  R2 RMSE 

(µg/m3) 

SLR AOD 0.52 38.3 

MLR AOD and weather parameters 0.67 33.7 

DT AOD 0.56 39.5 

DT AOD and weather parameters 0.70 34.0 

RF AOD 0.58 42.1 

RF AOD and weather parameters 0.85 16.6 

XGBoost AOD 0.54 48.9 
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XGBoost AOD and weather parameters 0.87 15.8 

Semi-Supervised XGBoost AOD and weather parameters 0.97 8.3 

 

3.7 PM2.5 estimation in other areas of Ouagadougou 
 In order to analyze and study the distribution of PM2.5 in the whole city, the semi-supervised 

XGBoost model is applied to estimate surface PM2.5 in the other 15 areas in the city of 

Ouagadougou, since these areas are in the same climate zone as Ouaga 2000. The PM2.5 estimation 

was done for the same period the model was trained so the growth and distribution of PM2.5 in 

Ouagadougou are studied.  

 3.7.1 Average of daily and monthly trend of estimated PM2.5 in 

Ouagadougou 
 In Figure 21, the average of daily estimated PM2.5 from the 16 areas (including Ouaga 

2000) in Ouagadougou for the period 2000-2022 is shown. It is observed that in the whole city, 

days in the dry season (November to April) are associated with high PM2.5 concentrations and day 

days in the rainy season (May to October) are associated with low PM2.5 concentrations and it is 

the same trend repeating every year. March has days with higher PM2.5 concentrations reaching a 

maximum of 350 µg/m3 whereas August has days with PM2.5 concentrations as low as 16 µg/m3. 

The lower PM2.5 concentrations in the rainy season are due to wet deposition and gravitational 

settling of the particles caused by precipitation whereas the higher PM2.5 concentrations in the dry 

season are due to the dust from the Sahara desert transported by Harmattan winds which reaches 

its peak in February-March. Also, dust from unpaved roads and biomass burning are the major 

contributors to the higher concentrations in the dry season (Nana et al., 2012). These variations are 

consistent with our second hypothesis that PM2.5 concentrations in Ouagadougou vary from season 

to season.  

 The monthly trend increases from September till March when the harmattan reaches its 

peak and then decreases till August when precipitation is frequent. The estimated daily PM2.5 

concentrations in the whole of Ouagadougou on average in every rainy season is 2 to 4 times higher 

than the WHO 24-hour limit of 15 µg/m3 and in every dry season, the estimated PM2.5 

concentrations on average are 2 to 22 times higher the WHO 24-hour limit. However, most of the 

days in the rainy season meet the US EPA recommended limit of 35 µg/m3 per day (US EPA, 
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2012). These findings are consistent with the findings from Nana et al. (2012); Ouarma et al. 

(2020) during the 2018-2019 measurement campaigns in Ouagadougou. They observed higher 

concentrations of PM2.5 in the dry season and lower PM2.5 concentrations in the rainy season with 

the PM2.5 concentrations in the rainy season being 2 to 3 times higher than the WHO recommended 

limit at many sites. 

 

Figure 21: Average of the daily and monthly trend of estimated PM2.5 in Ouagadougou 

3.7.2 Average yearly trend of estimated PM2.5 in Ouagadougou 
 Figure 22 shows the average yearly trend of estimated PM2.5 in Ouagadougou. The yearly 

trend of PM2.5 in the city is not direct, it increases and decreases but in general there is slight 

increasing trend. This result is in agreement with the findings by Ouarma et al. (2020), they found 

that particulate matter concentrations varied throughout their study period. The trend largely 

depends on the intensity of dust from the Sahara desert and the variability of weather conditions 

in a given year (Lindén et al., 2012). The higher the intensity of dust from the Sahara desert in a 

given year, the higher the concentrations of PM2.5 in that year. It also depends on the intensity of 

emissions from unpaved roads, heavy traffic, and industrial activities in a given year (Boman et 

al., 2009;  Nana et al., 2012; Ouarma et al., 2020). Great increases in the trend are observed in 

2004, 2010, and 2015 whilst great decreases are observed in 2002, 2003 and 2020.  

The observed low levels of PM2.5 concentrations in Ouagadougou during the years 2002 

and 2003 can be attributed to the relatively minimal presence of cars and industrial activities within 
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the city during that period. The limited number of cars on the roads during that time meant a lower 

release of particulate matter from vehicle exhausts, which is a significant contributor to PM2.5 

concentrations in urban areas. Additionally, the minimal presence of industrial activities, such as 

factories and manufacturing plants, resulted in a small amount of pollutants released into the 

atmosphere. 

 In 2020 where there was lockdown due to Covid-19, it is observed that the PM2.5 trend 

decreased significantly. This is because of the reduced in industrial activities and heavy traffic due 

to the lockdown. The findings are similar to the findings observed by McFarlane et al. (2021). 

They observed lower PM2.5 concentrations in 2020 in Kinshasa and Brazzaville due to the Covid-

19 lockdown. Similarly, Shi & Brasseur (2020) observed lower PM2.5 concentrations in China 

during the Covid-19 quarantine period.  

From 2000-2022, the average annual estimated PM2.5 concentrations range from 58.2 µg/m3 to 72. 

1 µg/m3, which is 11 to 14 times higher than the WHO guidelines of 5 µg/m3 annually and 4 to 6 

times higher than the U.S. EPA guidelines of 12 µg/m3 annually. These results are consistent with 

IQAir 2022 report which states that annual PM2.5 concentrations in Ouagadougou are over 10 times 

the WHO guidelines (IQAir, 2022). These results indicate very poor air quality in Ouagadougou. 

 

Figure 22: Average yearly trend of estimated PM2.5 in Ouagadougou 
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3.8 Spatial Distribution of PM2.5 in Ouagadougou. 

3.8.1 Dry season 2000-2005 
 Figure 23 shows the spatial distribution of estimated PM2.5 in dry season 2000-2005 in 

Ouagadougou. The minimum estimated PM2.5 concentrations in all the areas ranged between 40 

µg/m3 and 55 µg/m3 and the maximum estimated PM2.5 concentrations were all above 105 µg/m3. 

The mean estimated PM2.5 concentrations in all the areas of the city were between 70 µg/m3 and 

80 µg/m3 except in Yagma, Tengadogo, and Ouaga 2000 where the mean estimated PM2.5 

concentrations were slightly higher, between 80 µg/m3 and 85 µg/m3. Yagma and Ouaga 2000 

PM2.5 concentrations reached 90 µg/m3 and 100 µg/m3 respectively in the dry season of 2000 as 

shown in Figure 31 in appendices. Yagma, Tengadogo, and Ouaga 2000 are towns at the periphery 

of Ouagadougou, the slightly higher mean PM2.5 concentrations in these areas could depict greater 

emissions from unpaved roads. Another reason could be emissions from agricultural activities. 

The high PM2.5 concentrations in every area of the city in the dry season are majorly due to the 

dust transported from the Sahara desert by the Harmattan winds from November to March. 

 

Figure 23: Spatial distribution of estimated PM2.5 in dry season 2000-2005 
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3.8.2 Rainy Season 2000-2005 
 Figure 24 shows the spatial distribution of estimated PM2.5 in rainy season 2000-2005 in 

Ouagadougou. Generally, the estimated PM2.5 concentrations in the rainy were lower compared to 

the dry season. The minimum estimated concentrations in all the areas were below or equal to 35 

µg/m3. The maximum estimated concentrations of PM2.5 in all the areas were between 50 µg/m3and 

60 µg/m3. The mean estimated PM2.5 concentrations in all areas of the city were within the same 

range, between 35 µg/m3 and 40 µg/m3. In rainy season of 2000 and 2001, Yagma and Ouaga 2000 

had extremely lower mean PM2.5 concentrations below 35 µg/m3 as shown in Figure 31 and 

Figure 32 in appendices. The lower estimated PM2.5 concentrations clearly explains the influence 

of precipitation on the concentrations of PM2.5. Precipitation leads to wet deposition which 

removes PM2.5 particles in the atmosphere. Also, vegetation growth in the rainy season tend to 

absorb and remove pollutants in the air hence lowering PM2.5 concentrations.  

 

 

Figure 24: Spatial distribution of estimated PM2.5 in rainy season 2000-2005 
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3.8.3 Dry season 2006-2011 
 Figure 25 shows the spatial distribution estimated PM2.5 in dry season 2006-2011 in 

Ouagadougou. The minimum estimated PM2.5 concentrations were between 40 µg/m3 and 60 

µg/m3 for all the areas in Ouagadougou. However, the maximum estimated PM2.5 concentrations 

in each area of the city were all above 105 µg/m3. The high concentrations of PM2.5 in the dry 

season are largely due to the dust from the Sahara desert transported by the Harmattan winds. The 

mean estimated PM2.5 concentrations in the city were between 70 µg/m3 and 75 µg/m3 (about 6 % 

decrease from their PM2.5 levels in the dry season of 2000-2006) except Gounghin, Ouagadougou 

International Airport, Kamboinsi, and Tanghin which had slightly higher mean PM2.5 

concentrations between 75 µg/m3 and 80 µg/m3 (same levels as dry season of 2000-2006).  

 Ouagadougou International Airport, Kamboinsi, and Tanghin are home to many 

commercial activities with high volumes of traffic which contribute to higher levels of PM2.5 in 

these areas. Gounghin is one of the most established industrial zones in the city, home to many 

processing plants and factories hence emissions from industrial combustion activities and heavy 

trucks contribute to the higher PM2.5 levels in the area. The 6 % decrease in PM2.5 concentrations 

in other areas of the city largely depended on the intensity of dust transported from the Sahara 

desert and increment of paved roads within these areas. 
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Figure 25: Spatial distribution of estimated PM2.5 in rainy season 2006-2011 

3.8.4 Rainy season 2006-2011 
 Figure 26 shows the spatial distribution of estimated PM2.5 in rainy season 2006-2011 in 

Ouagadougou. PM2.5 concentrations in the rainy were lower with minimum concentrations below 

40 µg/m3 and maximum PM2.5 concentrations between 55 µg/m3 and 65 µg/m3 in all areas of the 

city except in Ouagadougou International Airport and Kossodo where maximum PM2.5 

concentrations were between 65 µg/m3 and 70 µg/m3. The mean estimated PM2.5 were between 35 

µg/m3 and 45 µg/m3 in all areas except in Gounghin, Kossodo, Ouagadougou International Airport, 

and Kamboinsi where the mean PM2.5 concentrations were between 55 µg/m3 and 60 µg/m3 (about 

50 % increment from the PM2.5 levels in the rainy season of 2000-2005). Kossodo is a rapidly 

growing industrial area in the city. It is a home to plastics manufacturing, metalworking, textile 

production, and food processing.  These activities lead to the high PM2.5 concentrations in the area. 

These findings are in agreement with the findings by (Nana et al., 2012), they observed high 

concentrations of gaseous pollutants at industrial sites (Kossodo and Gounghin) and downtown. 
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Figure 26: Spatial distribution of estimated PM2.5 in rainy season 2006-2011 

3.8.5 Dry season 2012-2017 
 Figure 27 shows the spatial distribution of estimated PM2.5 in dry season 2011-2017 in 

Ouagadougou. From this period, it was obviously clear that the industrial areas (Gounghin and 

Kossodo) are taking the lead in PM2.5 concentrations in the city. The minimum estimated PM2.5 

concentrations in Gounghin and Kossodo were between 65 µg/m3 and 70 µg/m3, about 16 % 

increment from their minimum PM2.5 concentrations in the dry season of 2006-2011. The mean 

estimated PM2.5 concentrations in these areas were between 85 µg/m3 and 95 µg/m3 which was 

about 19 % increment from their PM2.5 levels in 2006-2011. Goughin and Kossodo consistently 

had high PM2.5 concentrations in the dry season of 2014, 2015, 2016, and 2017 as shown in Figure 

45, Figure 46, Figure 47, and Figure 48 in appendices. The mean estimated PM2.5 concentrations 

of Tanghin and Ouagadougou International Airport were between 80 µg/m3 and 85 µg/m3, 6 % 

increment from their PM2.5 levels in the dry season of 2006-2011. However, the mean estimated 

PM2.5 concentrations in Karpala, Dassasgo, Roumtenga, Zagtouli, Koumdanyore, Kamboinsi, and 

Yagma were not significantly different than their PM2.5 levels in the dry season of 2006-2011. 
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Figure 27: Spatial distribution of estimated PM2.5 in dry season 2012-2017 

3.8.6 Rainy season 2012-2017 
 Figure 28 shows the spatial distribution of estimated PM2.5 in rainy season 2012-2017. The 

minimum concentrations of estimated PM2.5 in the rainy season were between 40 µg/m3 and 45 

µg/m3 for the industrial areas and areas in the center of Ouagadougou whereas in the remaining 

areas the minimum estimated PM2.5 were below 35 µg/m3. The maximum PM2.5 concentrations 

estimated at the industrial areas and the center of Ouagadougou were between 65 µg/m3 and 75 

µg/m3, about 7 % increment from their maximum PM2.5 concentrations in the rainy season of 2006-

2011. The mean estimated PM2.5 concentrations in Gounghin and Kossodo were between 65 µg/m3 

and 70 µg/m3, about 17 % increment from their levels in the rainy season of 2006-2011. These two 

areas consistently had high PM2.5 concentrations in the rainy season of 2015, 2016, and 2017 as 

shown in Figure 46, Figure 47, and Figure 48 in appendices. These high concentrations of PM2.5 

in these areas are due to emissions from industrial activities. Tanghin, Patte d’Oie, and 

Ouagadougou International Airport had mean estimated PM2.5 between 60 µg/m3 and 65 µg/m3. 

The high PM2.5 concentrations at these areas are due to emissions from heavy traffic since these 

areas are in the center of the city. However, concentrations of PM2.5 in the remaining areas of the 

city lowered by about 11 % than their levels in the rainy of 2006-2011. This decrease in PM2.5 
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concentrations in the rainy season largely depends on the intensity of rainfall occurring during the 

period. More rainfall leads to more wet depositions and vegetation growth hence lowering PM2.5 

concentrations in the atmosphere (Tai et al., 2012). 

 

Figure 28: Spatial distribution of estimated PM2.5 in dry season 2012-2017 

3.8.7 Dry season 2018-2022 
 Figure 29 shows the spatial distribution of PM2.5 in the dry season of 2018-2022. The 

minimum concentrations of estimated PM2.5 concentrations are between 40 µg/m3 and 60 µg/m3 

except Gounghin and Kossodo which are between 65 µg/m3 and 70 µg/m3. The mean estimated 

PM2.5 concentrations in these areas decreased by 11 % than their levels in the dry season of 2012-

2017. This decrease in PM2.5 concentrations in the industrial areas are due to the Covid-19 

lockdown where industrial activities decreased. Similarly, the estimated PM2.5 concentrations in 

the center of the city decreased by 6 % than their levels in the dry season of 2018-2022. This 

decrease is also due to the Covid-19 lockdown which constrained the movement of people hence 

reducing traffic emissions. However, the maximum estimated PM2.5 concentrations in the city are 

still above 105 µg/m3 mainly due to the Sahara desert transported dust. 
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Figure 29: Spatial distribution of estimated PM2.5 in dry season 2018-2022 

3.8.8 Rainy season 2018-2022 
 Figure 30 shows the spatial distributions of estimated PM2.5 in the rainy season of 2018-

2022.  The minimum estimated PM2.5 concentrations are below 35 µg/m3 except Gounghin and 

Kossodo which has minimum PM2.5 concentrations between 35 µg/m3 and 40 µg/m3.  The 

maximum PM2.5 concentrations estimated in all the areas are between 40 µg/m3 and 60 µg/m3 

except Gounghin, Kossodo, Tanghin, Ouagadougou International Airport, and Patte d’Oie which 

has maximum concentrations between 65 µg/m3 and 75 µg/m3. The mean estimated PM2.5 

concentrations in these areas are between 55 µg/m3 and 60 µg/m3. These higher values of estimated 

PM2.5 in these areas are due to the industrial activities (Gounghin and Kossodo) and the emissions 

from traffic (Tanghin, Ouagadougou International Airport, and Patte d’Oie). However, the 

estimated mean PM2.5 concentrations in these areas are lower than the estimated mean PM2.5 

concentrations in these areas in 2012-2017. Gounghin and Kossodo estimated mean PM2.5 

decreased by 14 % from their levels in the rainy season of 2012-2017. Kossodo, Tanghin, 
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Ouagadougou International Airport, and Patte d’Oie estimated mean PM2.5 concentrations also 

decreased by 8 % from their levels in the rainy season of 2012-2017. These decreases are due to 

the Covid-19 lockdown where industrial activities were temporarily closed or reduced and human 

movement was constrained to comply with social distancing and other safety measures. In 2020, 

the mean estimated PM2.5 in the rainy season were all below 40 µg/m3 as shown in Figure 51 in 

appendices. 

 

Figure 30: Spatial distribution of estimated PM2.5 in rainy season 2018-2022 
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CONCLUSION 
 

 Air monitoring stations in Ouagadougou are sparse despite the fact that the city is 

considered one of the most polluted cities in Africa. Due to the lack of surface observations of air 

pollution, few prior studies on fine particulate matter (PM2.5) has been done in the city.  This work 

used satellite aerosol optical depth (AOD) and meteorological parameters develop models for 

estimating daily PM2.5 in Ouagadougou. In all the models, AOD is the most important parameter 

in estimating PM2.5 in the city. In the SLR model, AOD explains 0.52 (R2=0.52) of the variations 

of surface PM2.5 in the city whereas in the DT, RF, and XGBoost model, AOD alone explains 0.56, 

0.58, and 0.54 of the variations of surface PM2.5 respectively.  

 Addition of meteorological parameters increase the performance of the models and hence 

the models’ ability to explain the variations of surface PM2.5. This indicates that meteorological 

parameters influence the variability of PM2.5 which in a long-run signifies that climate change may 

have significant impacts on air quality. XGBoost outperforms all the supervised models explaining 

0.87 (R2=0.87) of the variations of PM2.5 with an RMSE of 15.8 µg/m3. The upgraded XGBoost 

(semi-supervised XGBoost) model has an R2 of 0.97 and an RMSE of 8.3 µg/m3 indicating that 

with addition of the lots of unlabeled data, the variability of surface PM2.5 in the city can be 

captured. This confirms the hypothesis that an effective model can be developed for estimating 

PM2.5 from satellite AOD and meteorological parameters using small amount of labeled data and 

lots of unlabeled data in Ouagadougou by the incorporation of a semi-supervised algorithm. The 

results from the semi-supervised XGBoost model reveal that estimated PM2.5 concentrations in the 

city are 2 to 4 times higher than the WHO 24-hour limit of 15 µg/m3 in the rainy season and 2 to 

22 times higher than the WHO 24-hour limit in the dry season. However, in the rainy season, most 

days have PM2.5 concentrations within the US EPA 24-hour standard of 35 µg/m3. These variations 

confirm the hypothesis that PM2.5 concentrations vary from season to season. The higher PM2.5 

concentrations in the dry season are due the dust from the Sahara desert transported by the 

Harmattan winds whilst the lower PM2.5 concentrations in the rainy season are due to wet 

deposition and gravitational settling of PM2.5 particles. The month of March has the highest PM2.5 

concentrations when the Harmattan reaches its peak whilst the month of August has the lowest 

PM2.5 concentrations when the frequency of rainfall is high. The average annual estimated PM2.5 
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concentrations in the city are 11 to 14 times higher than the WHO average annual standard of 5 

µg/m3.  

 However, the yearly PM2.5 trend is not direct, it increases and decreases but generally there 

is a slight increasing trend from 2000-2022. In hourly basis, observed PM2.5 concentrations in 

Ouaga 2000 (U.S embassy) peak between 5:00 am and 9:00 am and 4:00 pm and 11:00 pm. The 

morning peak is due to emissions from traffic when people are going to work. The evening peak 

is due to emissions from heavy traffic when people are returning from work. The industrial areas 

(Gounghin and Kossodo) and areas around the center of the city are the major polluting areas due 

to combustions from industrial activities and emissions from heavy traffic hypothesis respectively. 

This verifies the hypothesis that PM2.5 concentrations at the industrial areas and the center are 

higher than the other areas of the city. From these findings, the main hypothesis that PM2.5 pollution 

concentrations can be estimated using AOD and meteorological parameters is confirmed. This 

research has provided information on PM2.5 concentrations in Ouagadougou that would help in 

epidemiological studies, city planning, and air quality decision-making. The developed semi-

supervised XGBoost model can be applied to other areas outside Ouagadougou where PM2.5 

surface monitoring is limited to estimate daily PM2.5. 

Based on the findings, the following recommendations are proposed to help address the 

alarming concentrations of PM2.5 in Ouagadougou and enhance air quality management in the city: 

Firstly, industries should implement cleaner production methods and install emission control 

systems such as electrostatic precipitators, scrubbers, and bag filters to capture pollutants and 

minimize their emissions. This would require a concerted effort by industry stakeholders to adopt 

and enforce stricter emission standards. Secondly, public transportation should be prioritized and 

the use of electric vehicles should be encouraged. Investing in a well-connected and efficient 

public transportation system would help reduce the number of private vehicles on the road, leading 

to lower emissions. Thirdly, there should be an improvement in traffic management and an 

increase in the number of paved roads within the city. Efficient traffic flow and well-maintained 

roads can help reduce congestion and the associated emissions from idling vehicles. Lastly, 

launching public awareness campaigns to educate residents about the health risks associated with 

high PM2.5 concentrations is recommended. Raising awareness about the sources of air pollution 
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and the importance of individual actions in reducing emissions can lead to behavioral changes and 

a collective effort to improve air quality.  

 In the future, inclusion of more PM2.5 observed data and other comprehensive data, such as 

land use and land cover, human flow, Emission inventories and traffic-related factors into the 

developed model would help to achieve a more rigorous PM2.5 estimation model. Additionally, in 

the future, the semi-supervised XGBoost would be improved to construct a forecasting model for 

projecting future air quality to help residents in planning outdoor activities reasonably, and to assist 

policy makers in taking pollution prevention measures in advance. 
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The spatial distribution of estimated PM2.5 in Ouagadougou according to each year is shown; 

 

Figure 31: Spatial distribution of estimated PM2.5 in 2000 

 

Figure 32: Spatial distribution of estimated PM2.5 in 2001 
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Figure 33: Spatial distribution of estimated PM2.5 in 2002 

 

Figure 34: Spatial distribution of estimated PM2.5 in 2003 

 

Figure 35: Spatial distribution of estimated PM2.5 in 2004 
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Figure 36: Spatial distribution of estimated PM2.5 in 2005 

 

Figure 37: Spatial distribution of estimated PM2.5 in 2006 

 

Figure 38: Spatial distribution of estimated PM2.5 in 2007 
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Figure 39: Spatial distribution of estimated PM2.5 in 2008 

 

Figure 40: Spatial distribution of estimated PM2.5 in 2009 

 

Figure 41: Spatial distribution of estimated PM2.5 in 2010 
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Figure 42: Spatial distribution of estimated PM2.5 in 2011 

 

Figure 43: Spatial distribution of estimated PM2.5 in 2012 

 

Figure 44: Spatial distribution of estimated PM2.5 in 2013 
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Figure 45: Spatial distribution of estimated PM2.5 in 2014 

 

Figure 46: Spatial distribution of estimated PM2.5 in 2015 

 

Figure 47: Spatial distribution of estimated PM2.5 in 2016 
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Figure 48: Spatial distribution of estimated PM2.5 in 2017 

 

Figure 49: Spatial distribution of estimated PM2.5 in 2018 

 

Figure 50: Spatial distribution of estimated PM2.5 in 2019 
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Figure 51: Spatial distribution of estimated PM2.5 in 2020 

 

Figure 52: Spatial distribution of estimated PM2.5 in 2021 

 

Figure 53: Spatial distribution of estimated PM2.5 in 2022 
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